The Next Generation Balloon-Borne Large Aperture Submillimeter Telescope (BLAST-TNG) was a unique instrument for characterizing the polarized submillimeter sky at high-angular resolution. BLAST-TNG flew from the Long Duration Balloon Facility in Antarctica in January 2020. Despite the short flight duration, the instrument worked very well and is providing significant information about each subsystem that will be invaluable for future balloon missions. In this contribution, we discuss the performance of telescope and gondola.
The Next Generation Balloon-borne Large Aperture Submillimeter Telescope (BLAST-TNG) is a submillimeter polarimeter designed to map interstellar dust and galactic foregrounds at 250, 350, and 500 microns during a 24-day Antarctic flight. The BLAST-TNG detector arrays are comprised of 918, 469, and 272 MKID pixels, respectively. The pixels are formed from two orthogonally oriented, crossed, linear-polarization sensitive MKID antennae. The arrays are cooled to sub 300 mK temperatures and stabilized via a closed cycle 3He sorption fridge in combination with a 4He vacuum pot. The detectors are read out through a combination of the second-generation Reconfigurable Open Architecture Computing Hardware (ROACH2) and custom RF electronics designed for BLAST-TNG. The firmware and software designed to readout and characterize these detectors was built from scratch by the BLAST team around these detectors, and has been adapted for use by other MKID instruments such as TolTEC and OLIMPO.1 We present an overview of these systems as well as in-depth methodology of the ground-based characterization and the measured in-flight performance.
We describe a custom time-to-digital converter (TDC) designed to time tag individual photons from multiple single photon detectors with high count rate, continuous data logging and low systematics. The instrument utilizes a taped-delay line approach on an FPGA chip which allows for sub-clock resolution of <100 ps. We implemented our TDC on a Re-configurable Open Architecture Computing Hardware Revision 2 (ROACH2) board which allows continuous data streaming and time tagging of up to 20 million events per second. The functioning prototype is currently set up to work with up to ten independent channels. We report on the laboratory characterization of the system, including RF pick up and mitigation as well as measurement of in-lab photon correlations from an incoherent light source (artificial star). Additional improvements to the TDC will also be discussed, such as improving the data transfer rate by a factor of 10 via an SDP+ Mezzanine card and PCIE 2SFP+ 10 Gb card, as well as scaling to 64 independent channels.
Differential evolution (DE) is a powerful and computationally inexpensive optimization strategy that can be used to search an entire parameter space or to converge quickly on a solution. The Kilopixel Array Pathfinder Project (KAPPa) is a heterodyne receiver system delivering 5 GHz of instantaneous bandwidth in the tuning range of 645-695 GHz. The fully automated KAPPa receiver test system finds optimal receiver tuning using performance feedback and DE. We present an adaptation of DE for use in rapid receiver characterization. The KAPPa DE algorithm is written in Python 2.7 and is fully integrated with the KAPPa instrument control, data processing, and visualization code. KAPPa develops the technologies needed to realize heterodyne focal plane arrays containing ~1000 pixels. Finding optimal receiver tuning by investigating large parameter spaces is one of many challenges facing the characterization phase of KAPPa. This is a difficult task via by-hand techniques. Characterizing or tuning in an automated fashion without need for human intervention is desirable for future large scale arrays. While many optimization strategies exist, DE is ideal for time and performance constraints because it can be set to converge to a solution rapidly with minimal computational overhead. We discuss how DE is utilized in the KAPPa system and discuss its performance and look toward the future of ~1000 pixel array receivers and consider how the KAPPa DE system might be applied.
We present the results from the magnetic field generation within the Kilopixel Array Pathfinder Project (KAPPa)
instrument. The KAPPa instrument is a terahertz heterodyne receiver using a Superconducting-Insulating-
Superconducting (SIS) mixers. To improve performance, SIS mixers require a magnetic field to suppress Josephson
noise. The KAPPa test receiver can house a tunable electromagnet used to optimize the applied magnetic field. The
receiver is also capable of accommodating a permanent magnet that applies a fixed field. Our permanent magnet design
uses off-the-shelf neodymium permanent magnets and then reshapes the magnetic field using machined steel
concentrators. These concentrators allow the use of an unmachined permanent magnet in the back of the detector block
while two small posts provide the required magnetic field across the SIS junction in the detector cavity. The KAPPa test
receiver is uniquely suited to compare the permanent magnet and electromagnet receiver performance. The current work
includes our design of a ‘U’ shaped permanent magnet, the testing and calibration procedure for the permanent magnet,
and the overall results of the performance comparison between the electromagnet and the permanent magnet counterpart.
The Greenland Telescope project will deploy and operate a 12m sub-millimeter telescope at the highest point of the Greenland i e sheet. The Greenland Telescope project is a joint venture between the Smithsonian As- trophysical Observatory (SAO) and the Academia Sinica Institute of Astronomy and Astrophysics (ASIAA). In this paper we discuss the concepts, specifications, and science goals of the instruments being developed for single-dish observations with the Greenland Telescope, and the coupling optics required to couple both them and the mm-VLBI receivers to antenna. The project will outfit the ALMA North America prototype antenna for Arctic operations and deploy it to Summit Station,1 a NSF operated Arctic station at 3,100m above MSL on the Greenland I e Sheet. This site is exceptionally dry, and promises to be an excellent site for sub-millimeter astronomical observations. The main science goal of the Greenland Telescope is to carry out millimeter VLBI observations alongside other telescopes in Europe and the Americas, with the aim of resolving the event horizon of the super-massive black hole at the enter of M87. The Greenland Telescope will also be outfitted for single-dish observations from the millimeter-wave to Tera-hertz bands. In this paper we will discuss the proposed instruments that are currently in development for the Greenland Telescope - 350 GHz and 650 GHz heterodyne array receivers; 1.4 THz HEB array receivers and a W-band bolometric spectrometer. SAO is leading the development of two heterodyne array instruments for the Greenland Telescope, a 48- pixel, 325-375 GHz SIS array receiver, and a 4 pixel, 1.4 THz HEB array receiver. A key science goal for these instruments is the mapping of ortho and para H2D+ in old protostellar ores, as well as general mapping of CO and other transitions in molecular louds. An 8-pixel prototype module for the 350 GHz array is currently being built for laboratory and operational testing on the Greenland Telescope. Arizona State University are developing a 650 GHz 256 pixel SIS array receiver based on the KAPPa SIS mixer array technology and ASIAA are developing 1.4 THz HEB single pixel and array receivers. The University of Cambridge and SAO are collaborating on the development of the CAMbridge Emission Line Surveyor (CAMELS), a W-band `on- hip' spectrometer instrument with a spectral resolution of R ~ 3000. CAMELS will consist of two pairs of horn antennas, feeding super conducting niobium nitride filter banks read by tantalum based Kinetic Inductance Detectors.
Here we present the methodology and initial results for a new near-field antenna radiation measurement system for submillimeter receivers. The system is based on a 4-port vector network analyzer with two synthesized sources. This method improves on similar systems employing this technique with the use of the network analyzer, which reduces the cost and complexity of the system. Furthermore, a single set of test equipment can analyze multiple receivers with different central frequencies; the frequency range of the system is limited by the output range of the network analyzer and/or the power output of the source signal. The amplitude and phase stability of the system in one configuration at 350 GHz was measured and found to be accurate enough to permit near field antenna measurements. The proper characterization of phase drifts across multiple test configurations demonstrates system reliability. These initial results will determine parameters necessary for implementing a near-field radiation pattern measurement of a Schottky diode receiver operating between 340-360 GHz.
We report on the laboratory testing of KAPPa, a 16-pixel proof-of-concept array to enable the creation THz imaging spectrometer with ~1000 pixels. Creating an array an order of magnitude larger than the existing state of the art of 64 pixels requires a simple and robust design as well as improvements to mixer selection, testing, and assembly. Our testing employs a single pixel test bench where a novel 2D array architecture is tested. The minimum size of the footprint is dictated by the diameter of the drilled feedhorn aperture. In the adjoining detector block, a 6mm × 6mm footprint houses the SIS mixer, LNA, matching and bias networks, and permanent magnet. We present an initial characterization of the single pixel prototype using a computer controlled test bench to determine Y-factors for a parameter space of LO power, LO frequency, IF bandwidth, magnet field strength, and SIS bias voltage. To reduce the need to replace poorly preforming pixels that are already mounted in a large format array, we show techniques to improve SIS mixer selection prior to mounting in the detector block. The 2D integrated 16-pixel array design has been evolved as we investigate the properties of the single pixel prototype. Carful design of the prototype has allowed for rapid translation of single pixel design improvements to be easily incorporated into the 16-pixel model.
Heterodyne focal plane arrays used in the terahertz (THz) regime currently require a discrete set of rigid coaxial cables for the transmission of individual intermediate frequency (IF) signals. Consequently, the size of an array is limited to ~10s of pixels due to limited physical space and the complexity of assembly. In order to achieve an array with ~1000 pixels or greater, new interconnections must be developed capable of carrying multiple IF signals on a single carrier which is flexible, robust to noise, and terminated with a high density RF connector. As an intermediate step to the development of a ~1000 pixel heterodyne focal plane array, the Kilopixel Array Pathfinder Project (KAPPa) has developed a 16 channel IF flex circuit. Initially, design simulations were performed to evaluate various means of high-frequency (1~10 GHz) signal transmission, including microstrip, stripline and coplanar waveguides. The method allowing for the closest signal spacing and greatest resistance to radio frequency interference (RFI) was determined to be stripline. Designs were considered where stripline transitioned to microstrip in order to terminate the signal. As microstrip transmission lines are sensitive to RFI, a design featuring just stripline was evaluated. In both the stripline-to-microstrip and stripline-only designs, a three-layer copper-coated polyimide substrate was used. Signal transitions were accomplished by a signal carrying “hot” via passing through a series of three conductive pads, similar to work by Leib et al. (2010). The transition design essentially mimics a coaxial line, where the radial distance between the pads and the ground plane is optimized in order to achieve desired impedances. In simulation, 50 Ohm impedances were achieved throughout, with crosstalk and return loss limited to -30dB. Terminations are made via an array of Corning Gilbert G3PO blind mate connectors, which are small enough to match the 6mm pixel pitch of the KAPPa focal plane unit. In addition, circuits with SMA terminations were designed to enable straightforward testing with a vector network analyzer (VNA). Initial designs use ½ oz. (18 microns thickness) copper conductors. In the KAPPa application, the copper conductor is still suitable for cryogenic applications because of the very small cross section presented by the copper conductor. The stripline design allows the interconnect to be clamped securely for heat sinking with a copper clamp at 10K and 60K. Heat load to the 4K stage is limited to 10 mW if the circuit is heat sunk at 10K 150mm from the 4K focal plane. Future designs could be implemented with phosphor bronze as the conductor to further limit heat load at the expense of added loss.
An automated test system was developed to characterize detectors for the Kilopixel Array Pathfinder Project (KAPPa), a 16-pixel 2D integrated heterodyne focal plane array. Although primarily designed for KAPPa, the system can be used with other instruments to automate tests that might be tedious and time-consuming by hand. Mechanical components include an adjustable structure of aluminum t-slot framing that supports a rotating chopper. Driven by a stepper motor, the wheel alternates between blackbodies at room temperature and 77 K. The cold load consists of absorbing material submerged in liquid nitrogen in an open Styrofoam cooler. Python scripts control the mechanical system, interface with receiver components, and process data. Test system operation was verified by sweeping the local oscillator frequency with a Virginia Diodes room temperature receiver. The system was then integrated with the KAPPa receiver to allow complete and automated testing of all array pixels with minimal user intervention.
KAPPa (the Kilopixel Array Pathfinder Project) is developing key technologies to enable the construction of heterodyne
focal plane arrays in the terahertz frequency regime with ~1000 pixels. The leap to ~1000 pixels requires solutions to
several key technological problems before the construction of such a focal plane is possible. The KAPPa project will
develop a small (16-pixel) 2D integrated heterodyne focal plane array for the 660 GHz atmospheric window as a
technological pathfinder towards future kilopixel heterodyne focal plane arrays.
Astronomical dust is observed in a variety of astrophysical environments and plays an important role in radiative
processes and chemical evolution in the galaxy. Depending upon the environment, dust can be either carbon-rich or
oxygen-rich (silicate grains). Both astronomical observations and ground-based data show that the optical properties of
silicates can change dramatically with the crystallinity of the material, and recent laboratory research provides evidence
that the optical properties of silicate dust vary as a function of temperature as well. Therefore, correct interpretation of a
vast array of astronomical data relies on the understanding of the properties of silicate dust as functions of wavelength,
temperature, and crystallinity. The OPASI-T (Optical Properties of Astronomical Silicates with Infrared Techniques)
project addresses the need for high quality optical characterization of metal-enriched silicate condensates using a variety
of techniques. A combination of both new and established experiments are used to measure the extinction, reflection,
and emission properties of amorphous silicates across the infrared (near infrared to millimeter wavelengths), providing a
comprehensive data set characterizing the optical parameters of dust samples. We present room temperature
measurements and the experimental apparatus to be used to investigate and characterize additional metal-silicate
materials.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.