The JWST Integrated Science Instrument Module (ISIM) includes a large metering structure (approx. 2m × 2m × 1.5m) that houses the science instruments and guider. Stringent dimensional stability and repeatability requirements combined with mass limitations led to the selection of a composite bonded frame design comprised of biased laminate tubes. Even with the superb material specific stiffness, achieving the required frequency for the given mass allocations in conjunction with severe spatial limitations imposed by the
instrument complement has proven challenging. In response to the challenge, the ISIM structure team considered literally over 100 primary structure topology and kinematic mount configurations, and settled on a concept comprised of over 70 m of tubes, over 50 bonded joint assemblies, and a "split bi-pod" kinematic mount configuration. In this paper, we review the evolution of the ISIM primary structure
topology and kinematic mount configuration to the current baseline concept.
KEYWORDS: Failure analysis, Composites, Interfaces, Received signal strength, Cryogenics, Finite element methods, Adhesives, Chemical elements, James Webb Space Telescope, Analytical research
A major design and analysis challenge for the JWST ISIM structure is thermal survivability of metal/composite adhesively bonded joints at the cryogenic temperature of 30K (-405°F). Current bonded joint concepts include internal invar plug fittings, external saddle titanium/invar fittings and composite gusset/clip joints all bonded to hybrid composite tubes (75mm square) made with M55J/954-6 and T300/954-6 prepregs. Analytical experience and design work done on metal/composite bonded joints at temperatures below that of liquid nitrogen are limited and important analysis tools, material properties, and failure criteria for composites at cryogenic temperatures are sparse in the literature. Increasing this challenge is the difficulty in testing for these required tools and properties at cryogenic temperatures. To gain confidence in analyzing and designing the ISIM joints, a comprehensive joint development test program has been planned and is currently running. The test program is designed to produce required analytical tools and develop a composite failure criterion for bonded joint strengths at cryogenic temperatures. Finite element analysis is used to design simple test coupons that simulate anticipated stress states in the flight joints; subsequently, the test results are used to correlate the analysis technique for the final design of the bonded joints. In this work, we present an overview of the analysis and test methodology, current results, and working joint designs based on developed techniques and properties.
The design and development of an optical bench (OB) for Wide Field Camera 3 (WFC3), a next generation science instrument for the Hubble Space Telescope (HST) has proven a challenging task. WFC3 will replace Wide Field Planetary Camera 2 (WF/PC 2) during the next servicing mission of the HST in 2004. The WFC3 program is re-using much of the hardware from WF/PC 1, returned from the First Servicing Mission, which has added complexity to the program. This posed some significant packaging challenges, further complicated by WFC3 utilizing two, separate optical channels. The WF/PC 1 optical bench could not house the additional optical components, so a new bench was developed. The new bench had to be designed to accommodate the sometimes-conflicting requirements of the two channels, which operate over a wavelength range of 200nm to 1800nm, from Near Ultraviolet to Near Infrared. In addition, the bench had to interface to the reused WF/PC 1 hardware, which was not optimized for this mission. To aid in the design of the bench, the team used software tools to merge structural, thermal and optical models to obtain performance (STOP) of the optical systems in operation. Several iterations of this performance analysis were needed during the design process to verify the bench would meet requirements. The fabrication effort included a rigorous material characterization program and significant tooling. After assembly, the optical bench underwent an extensive qualification program to prove the design and manufacturing processes. This paper provides the details of the design and development process of this highly optimized optical bench.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.