This paper discusses a novel pattern based standalone process verification technique that meets with current and future needs for semiconductor manufacturing of memory and logic devices. The choosing the right process verification technique is essential to bridge the discrepancy between the intended and the printed pattern. As the industry moving to very low k1 patterning solutions at each technology node, the challenges for process verification are becoming nightmare for lithography engineers, such as large number of possible verification defects and defect disposition. In low k1 lithography, demand for full-chip process verification is increasing. Full-chip process verification is applied post to process and optical proximity correction (OPC) step. The current challenges in process verification are large number of defects reported, disposition difficulties, long defect review times, and no feedback provided to OPC. The technique presented here is based on pattern based verification where each reported defects are classified in terms of patterns and these patterns are saved to a database. Later this database is used for screening incoming new design prior to OPC step.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.