Although head-up displays (HUDs) have already been installed in some commercial vehicles, their application to augmented reality (AR) is limited owing to the resulting narrow field of view (FoV) and fixed virtual-image distance. The matching of depth between AR information and real objects across wide FoVs is a key feature of AR HUDs to provide a safe driving experience. Meanwhile, current approaches based on the integration of two-plane virtual images and computer-generated holography suffer from problems such as partial depth control and high computational complexity, respectively, which makes them unsuitable for application in fast-moving vehicles. To bridge this gap, here, we propose a light-field-based 3D display technology with eye-tracking. We begin by matching the HUD optics with the light-field display view formation. First, we design mirrors to deliver high-quality virtual images with an FoV of 10 × 5° for a total eyebox size of 140 × 120 mm and compensate for the curved windshield shape. Next, we define the procedure to translate the driver eye position, obtained via eye-tracking, to the plane of the light-field display views. We further implement a lenticular-lens design and the corresponding sub-pixel-allocation-based rendering, for which we construct a simplified model to substitute for the freeform mirror optics. Finally, we present a prototyped device that affords the desired image quality, 3D image depth up to 100 m, and crosstalk level of <1.5%. Our findings indicate that such 3D HUDs can form the mainstream technology for AR HUDs.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.