Proceedings Article | 28 October 1996
John Sackos, Bart Bradley, Carl Diegert, Paul Ma, Charles Gary
KEYWORDS: Sensors, Cameras, Imaging systems, LIDAR, Image sensors, Range imaging, Image processing, Receivers, Computing systems, Scanning tunneling microscopy
NASA-Ames Research Center, in collaboration with Sandia National Laboratories, is developing a scannerless terrain mapper (STM) for autonomous vehicle guidance through the use of virtual reality. The STM sensor is based on an innovative imaging optical radar technology that is being developed by Sandia National Laboratories. The sensor uses active flood- light scene illumination and an image intensified CCD camera receiver to rapidly produce and record very high quality range imagery of observed scenes. The STM is an all solid- state device (containing no moving parts) and offers significant size, performance, reliability, simplicity, and affordability advantages over other types of 3-D sensor technologies, such as scanned laser radar, stereo vision, and structured lighting. The sensor is based on low cost, commercially available hardware, and is very well suited for affordable application to a wide variety of military and commercial uses, including: munition guidance, target recognition, robotic vision, automated inspection, driver enhanced vision, collision avoidance, site security and monitoring, and facility surveying. This paper reviews the sensor technology, discusses NASA's terrain mapping applications, and presents results from the initial testing of the sensor at NASA's planetary landscape simulator.