Two-photon absorption (2PA) transitions play a key role in numerous photonic applications, where many prominent features in the 2PA spectra of organic fluorophores are due to transitions between electronic-vibrational (vibronic) states. While quantum-chemical calculations excel at modelling purely electronic 2PA transitions, success in predicting vibronic properties remains limited. This is in part due to high computational costs of evaluating 2PA tensor derivatives required for Herzberg-Teller (HT) vibronic interactions, especially if carried out across full vibrational coordinate space of the chromophores. Here, we present a novel highly efficient and cost-effective approach to modelling of HT vibronic two-photon absorption spectra of organic fluorophores by using the latest version of FCclasses3 code combined with judicious pre-selection of symmetry-adapted vibrational subspace. We apply this method to a C2h inversion-symmetric diketopyrrolopyrrole chromophore, where the 2PA spectrum is dominated by HT terms because Franck-Condon contributions vanish due to LaPorte rule. Our results are in excellent agreement with recently reported experimental 2PA spectra confirming two-photon HT coupling is indeed dominated by, Bu-symmetry modes, and is also consistent with the experimentally observed polarization ratio. However, nominally-forbidden features near the electronic-origin appear significantly larger than HT coupling permits, indicating the presence of additional phenomena.
Linear spectrophotometric transmittance measurements are widely used for determining the value of molar extinction coefficient and other basic photophysical parameters of dissolved molecular species. However, such measurements usually require prior information about the molar concentration of the studied chromophores, which in many cases such as e.g. genetically encoded self-maturing species, is not readily available. Here we use wavelength-tunable femtosecond pulses to demonstrate that by performing high-accuracy measurement of small intensity-dependent changes induced in the sample transmittance due to absorption saturation we are able to estimate the extinction coefficient without prior knowledge of the concentration.
Triamino-heptazines (TAH's) comprise the fundamental building blocks of graphitic carbon nitride, an alluring material with promising applications in optoelectronics. However, the core D3h molecular symmetry enforces a forbidden lowest-energy excited singlet state, making it a challenge to characterize via conventional spectroscopy. Here, we measure oneand two-photon absorption spectra of an acidic form of triamino-heptazine, 3H-TAH, and use reversible acid/base titration to further probe the symmetry of the low-energy transitions in aqueous solution, which suggests the molecular base structure is dimelem. Two-photon absorption reveals two distinct low-energy transitions in acidic conditions, both of which are one-photon forbidden. The lowest energy state additionally becomes one-photon allowed in basic conditions. Spectroscopic changes can be described according to chromophore symmetry switching, with C3h, D3h, or Cs point group symmetry in respective acidic, neutral, or basic environments.
Two-photon excitation of fluorescence (2PEF) is a versatile tool for high-resolution functional microscopy, but few existing fluorophores combine high two-photon brightness with ability to report on key in vivo- and in vitro environmental factors such as pH, ionic strength, or solvent polarity. We describe four novel pH-sensitive derivatives of coumarin 151 with different attached phosphazene moieties, offering high lipophilicity both in their neutral- and protonated forms at near physiological conditions (neutral to mildly basic). We measure the two-photon absorption (2PA) and 2PEF emission spectra, as well as the fluorescence quantum yields in neutral acetonitrile solution, as well as with the addition of small amount of trifluoromethanesulfonic (triflic) or hydrochloric acid. We show that the neutral form has high two-photon brightness in the basic environments, whereas protonation quenches the fluorescence by a factor of ~ 20, while blueshifting the absorption- and emission peaks by 60 nm. By evaluating the ratio of the measured 2PA and 1PA spectra corresponding to the transition to the lowest excited singlet state S1 we show, for the first time, that the permanent molecular dipole moment change is reduced upon the protonation. This conclusion is supported by our quantum-chemical calculations which indicate that protonation leads to reduction of extent of conjugation in the system. We also measure the time-dependent fluorescence and show that in neutral environment the fluorescence displays a single-exponential decay, while upon protonation the decay is distinctly non-single-exponential in character.
Degenerate instantaneous two-photon absorption (2PA) cross section and 2PA spectrum measurements were used to determine the molecular electric dipole change in the metal-to-ligand charge-transfer transition of ruthenium(II) triscomplexes of 2,2’-bipyridine and 1,10-phenanthroline ligands. Comparison between the 2PA and one-photon absorption (1PA) spectra indicate that the phenanthroline complex has D3 symmetry in the ground state, while the bipyridine complex has its symmetry lowered. The high accuracy of the nonlinear cross section measurements was achieved by means of improved 2PA reference standards, and the dipole change was evaluated using the two essential states model of 2PA applied in the lowest-energy transitions. We demonstrate that quantitative 2PA spectroscopy is a viable alternative to standard methods used to estimate change of molecular dipole moment, and is uniquely informative of the effects of different solvents and local environments on the absorber.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.