Compared with traditional sparsity-driven methods, inverse synthetic aperture radar (ISAR) image enhancement method based on convolutional neural networks (CNNs) have outstanding performance in recent research, which improved the resolution of reconstructed image significantly with higher imaging efficiency. However, recently developed ISAR image enhancement methods based on neural networks are only effective in the same scenarios where the training data was generated. Additionally, all these method adopted the mean-squared error as the loss function, causing the reconstructed ISAR image to lose high-frequency information and fail to capture appropriate details. To address these limitations, a single ISAR image enhancement framework based on a modified super-resolution convolutional neural network (SRCNN) is proposed in this paper. The ISAR image enhancement processing framework were improved to minimize the influence of the fixed imaging model. A combined loss function, composed of the structural similarity (SSIM) loss and the L1 loss functions, was adopted in the proposed framework to retain the high-frequency information and the luminance information of the ISAR image, while improving the resolution. Through quantitative analysis of experimental results by using different quality evaluation indicators, it demonstrated that compared with extant methods, the proposed framework provides reconstructed ISAR images with higher resolution and definition over a range of different scenarios.
In actual urban scenes, the uncanonical facilities complicate the EM wave propagation environment, which makes traditional methods hard to work. To solve this problem, a novel method for Localization based on ray tracing is established. Firstly, the ray tracing technique is introduced to calculate the theoretical propagation path from the target, by which a dictionary of predicted multipath signals relative to different position parameters is constructed. Consequently, the position of the target can be estimated via matching Euclidean distance between the received multipath echoes and the predicted multipath dictionary. The simulation experiments show that the proposed method has higher localization accuracy especially in complicated scene.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.