We propose confocal Raman imaging as a label-free single cell characterization method that can be used as an alternative for conventional cell identification techniques that typically require labels, long incubation times and complex sample preparation. In this study it is investigated whether cancer and blood cells can be distinguished based on their Raman spectra. 2D Raman scans are recorded of 114 single cells, i.e. 60 breast (MCF-7), 5 cervix (HeLa) and 39 prostate (LNCaP) cancer cells and 10 monocytes (from healthy donors). For each cell an average spectrum is calculated and principal component analysis is performed on all average cell spectra. The main features of these principal components indicate that the information for cell identification based on Raman spectra mainly comes from the fatty acid composition in the cell. Based on the second and third principal component, blood cells could be distinguished from cancer cells; and prostate cancer cells could be distinguished from breast and cervix cancer cells. However, it was not possible to distinguish breast and cervix cancer cells. The results obtained in this study, demonstrate the potential of confocal Raman imaging for cell type classification and identification purposes.
A novel micro peristaltic pump with two separate parts is presented. One part of the pump was integrated into a small disposable cartridge and the other was made reusable as an integrated part in the analytical device. Regarding the first part, three identical chambers were fabricated in the cartridge and actuated in peristaltic mode by strong permanent magnetic forces as well as restoring forces. The peristaltic timing was generated by the second part which is a reusable rotating permanent sector magnet. A maximal flow rate of 3.1 mL/min and backpressure of 20 kPa were achieved with this pump.
Binary optics has been interested widely in recent years, where the optical element can be fabricated on a thin glass plate with micro-ion-etching film layer. A novel optical scanning system for gene disease diagnostics is developed in this paper, where four kinds optical devices are used, such as beam arrays splitter, arrays lens, filter arrays element and detection arrays. A soft for binary device designing with iterative method is programmed. Two beam arrays splitters are designed and fabricated, where one devices can divide a beam into the 9x9 arrays , the other will divide a beam into the 13x13 arrays. The beam arrays splitter has a good diffraction efficiency >70%, and an even energy distribution. The gene disease diagnostics system is portable by biochip and binary optics technology.
Laboratory-on-a-chip has been interested widely in recent years, where the sample preparation, bio-chemical reaction, separation, detection and analysis, are performed in a small biochip which is only a fingernall dimension. In order to obtain a high detection sensitivity 1 fluors/micrometers 2 (one fluorescence molecular per square micrometer) in biochip scanning system, it is required that the scanning objective lens is a big numerical aperture (> 0.5), very small focal spot (< 5 micrometers ) and long back focal length (> 3 mm). In this paper, a combined lens is designed for the scanning objective lens, which is with big numerical aperture NA > 0.7, very small focal spot (< 2 micrometers ) and long back focal length (> 3 mm). The phase aberrations of combined lens, including the aspherical aberration and the chromatic aberration corresponding to wavelength 532 nm, 570 nm, 635 nm, 670 nm, are corrected very well. The encircled energy diagram of the lens is good to the diffraction limit. The focal spot diagram, the optical path difference diagram, the transverse ray fan plot and the modulation transfer function, are studied also. A novel confocal scanning system of biochip with the designed combined lens as the objective lens is developed, some experiment results in a multi-channel biochip are obtained.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.