We investigate the influence of passivation structure on the optical mode distribution and LI characteristics for the edge emitting AlGaInP-GaInP visible laser diode (LD). For traditional single-layer Si3N4 or SiO2 passivation designs, the modification of dielectric layer thickness can determinate the lateral near-field confinement and change the horizontal far-field (FF) divergence. By increasing the film thickness, the non-radiation absorption come from Au-Ti can be improved and it leads to a narrow FF divergence beam. As continue to increasing the thickness, thicker passivation provides a better confinement factor and then the far-field pattern turn to be wider. For LI characteristics, it is necessary to deposit a thick enough passivation to reduce metal absorption. However, it cause much thermal energy accumulated in the ridge waveguide and deteriorate the quantum efficiency as adopting a too thick dielectric layer. Finally, we demonstrate a high power AlGaInP-GaInP multi quantum wells (MQWs) LD adopted a high-reflectivity passivation to enhance the LI characteristics and keep a suitable far-field divergence angle simultaneously. Under the design of threepair optical thin films, it cannot only avoid the metal absorption but also enhance emitting efficiency and heat dissipation by using a high reflective and good thermal conductive Al2O3/Ta2O5 multilayer. The measured room-temperature threshold current (Ith) and characteristic temperature (T0) can be arrived 44.5mA and 104.2K at 16.4° far-field divergence.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.