The Veloce spectrograph is a high resolution (R > 75000), compact, highly-stabilised, and hyper-calibrated echelle spectrograph to obtain Doppler velocities for Sun-like and M-dwarf at < 1 ms−1. This spectrograph was built utilising multiple innovations to provide a “just -enough-stabilisation” platform, compensating the science observations with simultaneous collected data from an ultra-stabilised calibration source. The spectrograph consists of three spectral arms, one of which has been in operation while the additional two arms were undergoing construction. The first arm of the spectrograph, the Rosso arm, has a wavelength coverage of 580-930 nm was installed at the Anglo-Australian Telescope (AAT) and saw first light in September 2018. The Verde, 434-593 nm, and Azzurro, 378-437 nm, spectral arms passed the final design review in February of 2021 and were installed May and June of 2023 with first light occurring in early July 2023. This paper presents a review of the upgrade project along with discussions on the mechanical and optical designs in terms of procurement and manufacturability. We discuss the changes to the instrument driven from the lessons learned during the construction of the first arm of the spectrograph including detector electronics, optical mounts, and infrastructure, also the provisional acceptance of the installed instrument. We also include a discussion on the determination of the very tight slope error tolerances for the aspheric lenses in order to limit the influence of the mid-spatial frequencies on the spectra presented to the detector.
Veloce is an ultra-stable fibre-fed R4 echelle spectrograph for the 3.9 m Anglo-Australian Telescope. The first channel to be commissioned, Veloce ‘Rosso’, utilises multiple low-cost design innovations to obtain Doppler velocities for sun-like and M-dwarf stars at <1 ms -1 precision. The spectrograph has an asymmetric white-pupil format with a 100-mm beam diameter, delivering R>75,000 spectra over a 580-930 nm range for the Rosso channel. Simultaneous calibration is provided by a single-mode pulsed laser frequency comb in tandem with a traditional arc lamp. A bundle of 19 object fibres ensures full sampling of stellar targets from the AAT site. Veloce is housed in dual environmental enclosures that maintain positive air pressure at a stability of ±0.3 mbar, with a thermal stability of ±0.01 K on the optical bench. We present a technical overview and early performance data from Australia's next major spectroscopic machine.
VELOCE is an IFU fibre feed and spectrograph for the AAT that is replacing CYCLOPS2. It is being constructed by the AAO and ANU. In this paper we discuss the design and engineering of the IFU/fibre feed components of the cable. We discuss the mode scrambling gain obtained with octagonal core fibres and how these octagonal core fibres should be spliced to regular circular core fibres to ensure maximum throughput for the cable using specialised splicing techniques. In addition we also describe a new approach to manufacturing a precision 1D/2D array of optical fibres for some applications in IFU manufacture and slit manufacture using 3D printed fused silica substrates, allowing for a cheap substitute to expensive lithographic etching in silicon at the expense of positional accuracy. We also discuss the Menlo Systems laser comb which employs endlessly-singlemode fibre to eliminate modal noise associated with multimode fibre transmission to provide the VELOCE spectrograph with a stable and repeatable source of wavelength calibration lines.
GNOSIS has provided the first on-telescope demonstration of a concept to utilize complex aperioidc fiber Bragg
gratings to suppress the 103 brightest atmospheric hydroxyl emission doublets between 1.47-1.7 μm. The unit is
designed to be used at the 3.9-meter Anglo-Australian Telescope (AAT) feeding the IRIS2 spectrograph. Unlike
previous atmospheric suppression techniques GNOSIS suppresses the lines before dispersion. We present the
results of laboratory and on-sky tests from instrument commissioning. These tests reveal excellent suppression
performance by the gratings and high inter-notch throughput, which combine to produce high fidelity OH-free
spectra.
CYCLOPS2 is an upgrade for the UCLES high resolution spectrograph on the Anglo-Australian Telescope, scheduled for commissioning in semester 2012A. By replacing the 5 mirror Coud´e train with a Cassegrain mounted fibre-based image slicer CYCLOPS2 simultaneously provides improved throughput, reduced aperture losses and increased spectral resolution. Sixteen optical fibres collect light from a 5.0 arcsecond2 area of sky and reformat it into the equivalent of a 0.6 arcsecond wide slit, delivering a spectral resolution of R= 70000 and up to twice as much flux as the standard 1 arcsecond slit of the Coud´e train. CYCLOPS2 also adds support for simultaneous ThAr wavelength calibration via a dedicated fibre. CYCLOPS2 consists of three main components, the fore-optics unit, fibre bundle and slit unit. The fore optics unit incorporates magnification optics and a lenslet array and is designed to mount to the CURE Cassegrain instrument interface, which provides acquisition, guiding and calibration facilities. The fibre bundle transports the light from the Cassegrain focus to the UCLES spectrograph at Coud´e and also includes a fibre mode scrambler. The slit unit consists of the fibre slit and relay optics to project an image of the slit onto the entrance aperture of the UCLES spectrograph. CYCLOPS2 builds on experience with the first generation CYCLOPS fibre system, which we also describe in this paper. We present the science case for an image slicing fibre feed for echelle spectroscopy and describe the design of CYCLOPS and CYCLOPS2.
We present a conceptual design for a Precision Radial Velocity Spectrograph (PRVS) for the Gemini telescope. PRVS is
a fibre fed high resolving power (R~70,000 at 2.5 pixel sampling) cryogenic echelle spectrograph operating in the near
infrared (0.95 - 1.8 microns) and is designed to provide 1 m/s radial velocity measurements. We identify the various
error sources to overcome in order to the required stability. We have constructed models simulating likely candidates
and demonstrated the ability to recover exoplanetary RV signals in the infrared. PRVS should achieve a total RV error of
around 1 m/s on a typical M6V star. We use these results as an input to a simulated 5-year survey of nearby M stars.
Based on a scaling of optical results, such a survey has the sensitivity to detect several terrestrial mass planets in the
habitable zone around nearby stars. PRVS will thus test theoretical planet formation models, which predict an abundance
of terrestrial-mass planets around low-mass stars.We have conducted limited experiments with a brass-board instrument
on the Sun in the infrared to explore real-world issues achieving better than 10 m/s precision in single 10 s exposures and
better than 5 m/s when integrated across a minute of observing.
IRIS2, the infrared imager and spectrograph for the Cassegrain focus of the Anglo Australian Telescope, has been in service since October 2001.
IRIS2 incorporated many novel features, including multiple cryogenic multislit masks, a dual chambered vacuum vessel (the smaller chamber used to reduce thermal cycle time required to change sets of multislit masks), encoded cryogenic wheel drives with controlled backlash, a deflection compensating structure, and use of teflon impregnated hard anodizing for gear lubrication at low temperatures. Other noteworthy features were: swaged foil thermal link terminations, the pupil imager, the detector focus mechanism, phased getter cycling to prevent detector contamination, and a flow-through LN2 precooling system. The instrument control electronics was designed to allow accurate positioning of the internal mechanisms with minimal generation of heat. The detector controller was based on the AAO2 CCD controller, adapted for use on the HAWAII1 detector (1024 x 1024 pixels) and is achieving low noise and high performance.
We describe features of the instrument design, the problems encountered and the development work required to bring them into operation, and their performance in service.
IRIS2 is a near-infrared imager and spectrograph based on a HAWAII1 HgCdTe detector. It provides wide-field (7.7’×7.7’) imaging capabilities at 0.4486”/pixel sampling, long-slit spectroscopy at λ/Δλ≈2400 in each of the J, H and K passbands, and the ability to do multi-object spectroscopy in up to three masks. These multi-slit masks are laser cut, and have been manufactured for both traditional multiple slit work (≈20-40 objects in a 3’×7.4’ field-of-view), multiple slit work in narrow-band filters (≈100 objects in a 5’×7.4’ field-of-view), and micro-hole spectroscopy in narrow-band filters allowing the observation of ≈200 objects in a 5’×7.4’ field.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.