The instrumentation of the Prime Focus Spectrograph (PFS), a next generation facility instrument on the Subaru telescope, is now in the final phase of its commissioning process and its general, open-use operations for sciences will provisionally start in 2025. The instrument enables simultaneous spectroscopy with 2386 individual fibers distributed over a very wide (∼1.3 degrees in diameter) field of view on the Subaru’s prime focus. The spectra cover a wide range of wavelengths from 380nm to 1260nm in one exposure in the Low-Resolution (LR) mode (while the visible red channel has the Medium-Resolution (MR) mode as well that covers 710−885nm). The system integration activities at the observatory on Maunakea in Hawaii have been continuing since the arrival of the Metrology Camera System in 2018. On-sky engineering tests and observations have also been carried out continually since September 2021 and, despite various difficulties in interlacing commissioning processes with development activities on the schedule and addressing some major issues on hardware and software, the team successfully observed many targeted stars as intended over the entire field of view (Engineering First Light) in September 2022. Then in parallel to the arrival, integration and commissioning of more hardware components, validations and optimizations of the performance and operation of the instrument are ongoing. The accuracy of the fiber positioning process and the speed of the fiber reconfiguration process have been recently confirmed to be ∼ 20−30μm for 95% of allocated fibers, and ∼130 seconds, respectively. While precise quantitative analyses are still in progress, the measured throughput has been confirmed to be consistent with the model where the information from various sub-components and sub-assemblies is integrated. Long integration of relatively faint objects are being taken to validate an expected increase of signal-to-noise ratio as more exposures are taken and co-added without any serious systematic errors from, e.g., sky subtraction process. The PFS science operation will be carried out in a queue mode by default and various developments, implementations and validations have been underway accordingly in parallel to the instrument commissioning activities. Meetings and sessions are arranged continually with the communities of potential PFS users on multiple scales, and discussions are iterated for mutual understanding and possible optimization of the rules and procedures over a wide range of processes such as proposal submission, observation planning, data acquisition and data delivery. The end-to-end processes of queue observations including successive exposures with updated plans based on assessed qualities of the data from past observations are being tested during engineering observations, and further optimizations are being undertaken. In this contribution, a top-level summary of these achievements and ongoing progresses and future perspectives will be provided.
MOSAIC is the Multi-Object Spectrograph (MOS) for the 39m Extremely Large Telescope (ELT) of the European Southern Observatory (ESO), with unique capabilities in terms of multiplex, wavelength coverage and spectral resolution. It is a versatile multi-object spectrograph working in both the Visible and NIR domains, designed to cover the largest possible area (∼40 arcmin2) on the focal plane, and optimized to achieve the best possible signal-to-noise ratio on the faintest sources, from stars in our Galaxy to galaxies at the epoch of the reionization. In this paper we describe the main characteristics of the instrument, including its expected performance in the different observing modes. The status of the project will be briefly presented, together with the positioning of the instrument in the landscape of the ELT instrumentation. We also review the main expected scientific contributions of MOSAIC, focusing on the synergies between this instrument and other major ground-based and space facilities.
The Maunakea Spectroscopic Explorer (MSE) project will provide multi-object spectroscopy in the optical and near-infrared bands using an 11.25-m aperture telescope, repurposing the original Canada–France–Hawaii Telescope site. MSE will observe 4332 objects per single exposure with a field of view of 1.5 square degrees, utilizing two spectrographs with low-moderate (R∼3000, 6000) and high (R≈30,000) spectral resolution. In general, an exposure time calculator (ETC) is used to estimate the performance of an observing system by calculating the signal- to-noise ratio (S/N) and exposure time. We present the design of the MSE ETC, which has four calculation modes (S/N, exposure time, S/N trend with wavelength, and S/N trend with magnitude) and incorporates the MSE system requirements as specified in the conceptual design. The MSE ETC currently allows for user-defined inputs of the target AB magnitude, water vapor, air mass, and sky brightness AB magnitude (additional user inputs can be provided depending on the computational mode). The ETC is built using Python 3.7 and features a graphical user interface that allows for cross-platform use. The development process of the ETC software follows an Agile methodology and utilizes the unified modeling language diagrams to visualize the software architecture. We also describe the testing and verification of the MSE ETC.
The Maunakea Spectroscopic Explorer (MSE) will convert the 3.6-m Canada-France-Hawaii Telescope (CFHT) into an 11.25-m primary aperture telescope with a 1.5 square degrees field-of-view at the prime focus. It will produce multi-object spectroscopy with a suite of low (R∼3,000), moderate (R∼6,000), and high (R∼40,000) spectral resolution spectrographs in optical and near-infrared bands that are capable of detecting over 4,000 objects per pointing. Generally, an exposure time calculator (ETC) should simulate a system performance by computing a signal-to-noise ratio (SNR) and exposure time based on parameters such as a target magnitude, a total throughput of the system, and sky conditions, etc. The ETC that we have developed for MSE has individual computation modes for SNR, exposure time, SNR as a function of AB magnitude, and SNR as a function of wavelength. The code is based on an agile development methodology and allows for a variety of user input. Users must select either LR, MR, or HR spectral resolution settings in order to pull the associated MSE instrument parameters. Additionally, users must specify the target and background sky magnitudes (and have the ability to alter the default airmass and water vapor values). The software is developed with Python 3.7, and Tkinter graphical user interface is implemented to facilitate cross-platform use. In this paper, we present the logic structure and various functionalities of our MSE-ETC, including a software design and a demonstration.
Maunakea Spectroscopic Explorer (MSE) is a telescope dedicated to multi-fibers spectroscopy and IFUs observations of the sky. Program Execution System Architecture (PESA) is one of the systems of MSE, responsible for planning, executing, reducing, and distributing science products from survey programs. Work is being done to design PESA in a modular way to include several sophisticated software tools, organized into an operational framework. This paper describes the first step of its organization and the concepts that will be used in the development of PESA.
PFS (Prime Focus Spectrograph), a next generation facility instrument on the Subaru telescope, is now being tested on the telescope. The instrument is equipped with very wide (1.3 degrees in diameter) field of view on the Subaru’s prime focus, high multiplexity by 2394 reconfigurable fibers, and wide waveband spectrograph that covers from 380nm to 1260nm simultaneously in one exposure. Currently engineering observations are ongoing with Prime Focus Instrument (PFI), Metrology Camera System (MCS), the first spectrpgraph module (SM1) with visible cameras and the first fiber cable providing optical link between PFI and SM1. Among the rest of the hardware, the second fiber cable has been already installed on the telescope and in the dome building since April 2022, and the two others were also delivered in June 2022. The integration and test of next SMs including near-infrared cameras are ongoing for timely deliveries. The progress in the software development is also worth noting. The instrument control software delivered with the subsystems is being well integrated with its system-level layer, the telescope system, observation planning software and associated databases. The data reduction pipelines are also rapidly progressing especially since sky spectra started being taken in early 2021 using Subaru Nigh Sky Spectrograph (SuNSS), and more recently using PFI during the engineering observations. In parallel to these instrumentation activities, the PFS science team in the collaboration is timely formulating a plan of large-sky survey observation to be proposed and conducted as a Subaru Strategic Program (SSP) from 2024. In this article, we report these recent progresses, ongoing developments and future perspectives of the PFS instrumentation.
MOSAIC is the Muti-Object Spectrograph for the ESO Extremely Large Telescope. The Laboratoire d’Astrophysique de Marseille (LAM) is in charge of the instrument “Assembly, Integration, Test and Verification (AIT/V)” phases. AITV for AO instruments, in laboratory as in the telescope, always represent numerous technical challenges. We already started the preparation and planning for the instrument level AIT activities, from identification of needs, challenges, risks, to defining the optimal AIT strategy. In this paper, we present the state of this study and describe several AIT/V scenarios and a planning for AIT phases in Europe and in Chile. We also show our capacity, experience and expertise to lead the instrument MOSAIC AIT/V activities.
MOSAIC is the Multi-Object Spectrograph for the ESO Extremely Large Telescope, approved to enter Phase B beginning 2022. It is conceived as a multi- purpose instrument covering the Visible and Near Infrared bandwidth (0.45 –1.8 μm) with two observing modes: spatially resolved spectroscopy with 8 integral field units; and the simultaneous observation of 200 objects in the VIS and NIR in unresolved spectroscopy.
We present an overview of the main MOSAIC science drivers and the actual baseline design for the instrument. The prototyping and developments undertaken by the consortium to evaluate the feasibility of the project are also discussed.
PFS (Prime Focus Spectrograph), a next generation facility instrument on the Subaru telescope, is a very wide- field, massively multiplexed, and optical and near-infrared spectrograph. Exploiting the Subaru prime focus, 2394 reconfigurable fibers will be distributed in the 1.3 degree-diameter field of view. The spectrograph system has been designed with 3 arms of blue, red, and near-infrared cameras to simultaneously deliver spectra from 380nm to 1260nm in one exposure. The instrumentation has been conducted by the international collaboration managed by the project office hosted by Kavli IPMU. The team is actively integrating and testing the hardware and software of the subsystems some of which such as Metrology Camera System, the first Spectrograph Module, and the first on-telescope fiber cable have been delivered to the Subaru telescope observatory at the summit of Maunakea since 2018. The development is progressing in order to start on-sky engineering observation in 2021, and science operation in 2023. In parallel, the collaboration is trying to timely develop a plan of large-sky survey observation to be proposed and conducted in the framework of Subaru Strategic Program (SSP). This article gives an overview of the recent progress, current status and future perspectives of the instrumentation and scientific operation.
The Maunakea Spectroscopic Explorer (MSE) will transform the Canada-France-Hawaii Telescope into an 11.25-m aperture telescope, dedicated to highly multiplexed, visible to near-IR spectroscopic studies with multiple spectral resolution modes. A metric of MSE’s success is survey speed, i.e. how many scientifically useful spectra MSE will obtain in support of its surveys, which requires hardware and software to be designed and perform efficiently. In this paper, we describe the front-end software, which includes proposal review, a scheduler, an exposure time calculator, and a breaker to prepare and define the survey observations, and the back-end software, which includes data reduction and science pipelines, science archive, and science platform to deliver the data back to the science community. The interfaces, the flow of data, and the overarching object model will be explained. We also discuss the tools required to support the Design Reference Survey that describes and simulates the science operations of MSE.
PFS (Prime Focus Spectrograph), a next generation facility instrument on the 8.2-meter Subaru Telescope, is a very wide-field, massively multiplexed, optical and near-infrared spectrograph. Exploiting the Subaru prime focus, 2394 reconfigurable fibers will be distributed over the 1.3 deg field of view. The spectrograph has been designed with 3 arms of blue, red, and near-infrared cameras to simultaneously observe spectra from 380nm to 1260nm in one exposure at a resolution of ~ 1.6-2.7Å. An international collaboration is developing this instrument under the initiative of Kavli IPMU. The project recently started undertaking the commissioning process of a subsystem at the Subaru Telescope side, with the integration and test processes of the other subsystems ongoing in parallel. We are aiming to start engineering night-sky operations in 2019, and observations for scientific use in 2021. This article gives an overview of the instrument, current project status and future paths forward.
PFS (Prime Focus Spectrograph), a next generation facility instrument on the 8.2-meter Subaru Telescope, is a very wide-field, massively multiplexed, optical and near-infrared spectrograph. Exploiting the Subaru prime focus, 2394 reconfigurable fibers will be distributed over the 1.3 deg field of view. The spectrograph has been designed with 3 arms of blue, red, and near-infrared cameras to simultaneously observe spectra from 380nm to 1260nm in one exposure at a resolution of ~1.6 - 2.7Å. An international collaboration is developing this instrument under the initiative of Kavli IPMU. The project is now going into the construction phase aiming at undertaking system integration in 2017-2018 and subsequently carrying out engineering operations in 2018-2019. This article gives an overview of the instrument, current project status and future paths forward.
The Prime Focus Spectrograph (PFS) is an optical/near-infrared multifiber spectrograph with 2394 science fibers distributed across a 1.3-deg diameter field of view at the Subaru 8.2-m telescope. The wide wavelength coverage from 0.38 μm to 1.26 μm, with a resolving power of 3000, simultaneously strengthens its ability to target three main survey programs: cosmology, galactic archaeology and galaxy/AGN evolution. A medium resolution mode with a resolving power of 5000 for 0.71 μm to 0.89 μm will also be available by simply exchanging dispersers. We highlight some of the technological aspects of the design. To transform the telescope focal ratio, a broad-band coated microlens is glued to each fiber tip. A higher transmission fiber is selected for the longest part of the cable system, optimizing overall throughput; a fiber with low focal ratio degradation is selected for the fiber-positioner and fiber-slit components, minimizing the effects of fiber movements and fiber bending. Fiber positioning will be performed by a positioner consisting of two stages of piezo-electric rotary motors. The positions of these motors are measured by taking an image of artificially back-illuminated fibers with the metrology camera located in the Cassegrain container; the fibers are placed in the proper location by iteratively measuring and then adjusting the positions of the motors. Target light reaches one of the four identical fast-Schmidt spectrograph modules, each with three arms. The PFS project has passed several project-wide design reviews and is now in the construction phase.
The Prime Focus Spectrograph (PFS) is an optical/near-infrared multi-fiber spectrograph with 2394 science fibers, which
are distributed in 1.3 degree diameter field of view at Subaru 8.2-meter telescope. The simultaneous wide wavelength
coverage from 0.38 μm to 1.26 μm, with the resolving power of 3000, strengthens its ability to target three main survey
programs: cosmology, Galactic archaeology, and galaxy/AGN evolution. A medium resolution mode with resolving
power of 5000 for 0.71 μm to 0.89 μm also will be available by simply exchanging dispersers. PFS takes the role for the
spectroscopic part of the Subaru Measurement of Images and Redshifts (SuMIRe) project, while Hyper Suprime-Cam
(HSC) works on the imaging part. HSC’s excellent image qualities have proven the high quality of the Wide Field
Corrector (WFC), which PFS shares with HSC. The PFS collaboration has succeeded in the project Preliminary Design
Review and is now in a phase of subsystem Critical Design Reviews and construction.
To transform the telescope plus WFC focal ratio, a 3-mm thick broad-band coated microlens is glued to each fiber tip.
The microlenses are molded glass, providing uniform lens dimensions and a variety of refractive-index selection. After
successful production of mechanical and optical samples, mass production is now complete. Following careful
investigations including Focal Ratio Degradation (FRD) measurements, a higher transmission fiber is selected for the
longest part of cable system, while one with a better FRD performance is selected for the fiber-positioner and fiber-slit
components, given the more frequent fiber movements and tightly curved structure. Each Fiber positioner consists of two
stages of piezo-electric rotary motors. Its engineering model has been produced and tested. After evaluating the statistics
of positioning accuracies, collision avoidance software, and interferences (if any) within/between electronics boards,
mass production will commence. Fiber positioning will be performed iteratively by taking an image of artificially back-illuminated
fibers with the Metrology camera located in the Cassegrain container. The camera is carefully designed so
that fiber position measurements are unaffected by small amounts of high special-frequency inaccuracies in WFC lens
surface shapes.
Target light carried through the fiber system reaches one of four identical fast-Schmidt spectrograph modules, each with
three arms. All optical glass blanks are now being polished. Prototype VPH gratings have been optically tested. CCD
production is complete, with standard fully-depleted CCDs for red arms and more-challenging thinner fully-depleted
CCDs with blue-optimized coating for blue arms. The active damping system against cooler vibration has been proven to
work as predicted, and spectrographs have been designed to avoid small possible residual resonances.
SPIRou is a near-infrared, echelle spectropolarimeter/velocimeter under design for the 3.6m Canada-France-
Hawaii Telescope (CFHT) on Mauna Kea, Hawaii. The unique scientific capabilities and technical design features
are described in the accompanying papers at this conference. In this paper we focus on the data reduction software
(DRS) and the data simulation tool. The SPIRou DRS builds upon the experience of the existing SOPHIE,
HARPS and ESPADONS spectrographs; class-leaders instruments for high-precision RV measurements and
spectropolarimetry. While SPIRou shares many characteristics with these instruments, moving to the near-
infrared domain brings specific data-processing challenges: the presence of a large number of telluric absorption
lines, strong emission sky lines, thermal background, science arrays with poorer cosmetics, etc. In order for the
DRS to be fully functional for SPIRou's first light in 2015, we developed a data simulation tool that incorporates
numerous instrumental and observational e_ects. We present an overview of the DRS and the simulation tool
architectures.
The Prime Focus Spectrograph (PFS) of the Subaru Measurement of Images and Redshifts (SuMIRe) project has been
endorsed by Japanese community as one of the main future instruments of the Subaru 8.2-meter telescope at Mauna Kea,
Hawaii. This optical/near-infrared multi-fiber spectrograph targets cosmology with galaxy surveys, Galactic archaeology,
and studies of galaxy/AGN evolution.
Taking advantage of Subaru’s wide field of view, which is further extended with the recently completed Wide Field
Corrector, PFS will enable us to carry out multi-fiber spectroscopy of 2400 targets within 1.3 degree diameter. A
microlens is attached at each fiber entrance for F-ratio transformation into a larger one so that difficulties of spectrograph design are eased. Fibers are accurately placed onto target positions by positioners, each of which consists of two stages
of piezo-electric rotary motors, through iterations by using back-illuminated fiber position measurements with a widefield
metrology camera. Fibers then carry light to a set of four identical fast-Schmidt spectrographs with three color arms
each: the wavelength ranges from 0.38 μm to 1.3 μm will be simultaneously observed with an average resolving power
of 3000.
Before and during the era of extremely large telescopes, PFS will provide the unique capability of obtaining spectra of
2400 cosmological/astrophysical targets simultaneously with an 8-10 meter class telescope. The PFS collaboration, led
by IPMU, consists of USP/LNA in Brazil, Caltech/JPL, Princeton, and JHU in USA, LAM in France, ASIAA in Taiwan,
and NAOJ/Subaru.
Trevor Fulton, Jean-Paul Baluteau, George Bendo, Dominique Benielli, Rene Gastaud, Matt Griffin, Steve Guest, Peter Imhof, Tanya Lim, Nanyao Lu, David Naylor, Pasquale Panuzzo, Edward Polehampton, Arnold Schwartz, Christian Surace, Bruce Swinyard, Kevin Xu
We present an update to the data processing pipelines that generate calibrated spectral data products from the Spectral
and Photometric Imaging Receiver (SPIRE), one of three scientific instruments onboard the European Space Agency's
Herschel Space Observatory launched on 14 May 2009. The pipelines process telemetry from SPIRE's imaging Fourier
Transform Spectrometer (FTS) taken in point source, jiggle- and raster-map observing modes, producing calibrated
spectra in low-, medium-, high-, and mixed low- and high-spectral resolution. While the order and algorithms of the data
processing modules in the spectrometer pipelines remain for the most part unchanged compared to their pre-launch
status, some improvements and optimizations have been realized through the analysis of data from the performance
verification and science demonstration phases of the mission. The data processing pipelines for the SPIRE FTS as of the
beginning of the routine phase of the Herschel mission are presented in their entirety, with more detailed descriptions
reserved for those elements that have changed since launch, in particular the first- and second-level correction steps for
glitches, the step that corrects for clipped samples, and the process by which Level-1 spectral data are converted to
Level-2 products. In addition, we discuss some of the challenging aspects still faced by the automated processing
pipelines, such as the removal of the contributions from the Herschel telescope and SPIRE instrument, and the relative
spectral response correction and flux conversion steps.
The Spectral and Photometric Imaging Receiver (SPIRE) is one of three scientific instruments onboard the European
Space Agency's Herschel Space Observatory launched on 14 May 2009. The low to medium resolution spectroscopic
capability of SPIRE is provided by an imaging Fourier transform spectrometer of the Mach-Zehnder configuration.
Results from the in flight performance verification phase of the SPIRE spectrometer are presented and conformance with
the instrument design specifications is reviewed.
Herschel is a satellite mission led by ESA and involving an international consortium of countries. The HCSS is in charge
of the data processing pipeline. This pipeline is written in Jython and includes java classes. We present a convenient
way for a user to deal with SPIRE photometer and spectrometer pipeline scripts. The provided Graphical User Interface
is built up automatically from Jython script. The user can choose tasks to be executed, parameterise them and set
breakpoints during the pipeline execution. Results can be displayed and saved in FITS and VOTable formats.
KEYWORDS: Stars, Planets, Detection and tracking algorithms, Satellites, Signal detection, Databases, Binary data, Space telescopes, Exoplanets, Data processing
CoRoT (Convection, Rotation and planetary Transits) is a satellite mission led by CNES. CoRot has been successfully
launched on December 27th of 2006. One of its goals is to discover new exo-planets using the transit method. It observes
stars and sample their emission light every 512 seconds leading to observing runs of 12000 light curves over a 6 months
period. For each run, 1000 of these light curves can be over-sampled up to 32 second allowing a transit detection. In
order to select the targets to be over-sampled, the ground segment team at LAM set up an infrastructure to get and
analyse preliminary N1 data within a week delay. The selected target are ordered in a list transmitted to the "Centre de
Mission Corot" (CMC). We present the infrastructure of the over-sampling mode, the over-sampling software used for
detection in raw light-curves and the mechanisms of list ordering and selection. This paper describes as well the feed
back over the past one and a half year of operation.
Trevor Fulton, David Naylor, Jean-Paul Baluteau, Matt Griffin, Peter Davis-Imhof, Bruce Swinyard, Tanya Lim, Christian Surace, Dave Clements, Pasquale Panuzzo, Rene Gastaud, Edward Polehampton, Steve Guest, Nanyao Lu, Arnold Schwartz, Kevin Xu
We present the data processing pipeline to generate calibrated data products from the Spectral and Photometric Imaging
Receiver (SPIRE) imaging Fourier Transform Spectrometer. The pipeline processes telemetry from SPIRE point source,
jiggle- and raster-map observations, producing calibrated spectra in low-, medium-, high-, and mixed low- and highresolution
modes. The spectrometer pipeline shares some elements with the SPIRE photometer pipeline, including the
conversion of telemetry packets into data timelines and the calculation of bolometer voltages from the raw telemetry. We
present the following fundamental processing steps unique to the spectrometer: temporal and spatial interpolation of the
stage mechanism and detector data to create interferograms; apodization; Fourier transform, and creation of a
hyperspectral data cube. We also describe the corrections for various instrumental effects including first- and secondlevel
glitch identification and removal, correction of the effects due to the Herschel primary mirror and the spectrometer
calibrator, interferogram baseline correction, channel fringe correction, temporal and spatial phase correction, non-linear
response of the bolometers, variation of instrument performance across the focal plane arrays, and variation of spectral
efficiency. Astronomical calibration is based on combinations of observations of standard astronomical sources and
regions of space known to contain minimal emission.
We present a method based on local regularity analysis to detect glitch signatures in an interferometric signal. The regularity is given by the local value of the Holder exponent. This exponent can be derived using a Holderian analysis with a wavelet coefficients modulus calculation along wavelet transform modulus maxima lines (so called WTMML) in suitably selected regions of the time-scale half-plane. Glitches that are considered as a discontinuity on the signal show Holder exponent lower than a fixed threshold defined for a continuous signal (around -1). The method has been tested using computed histograms simulations derived from "HERSCHEL / SPIRE" theoretical signals. Statistics show that the optimization of the detection parameters should take into account variables such as sampling rate, signal to noise ratio but is almost independent of the glitch amplitude.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.