We report on developments of submillimeter heterodyne arrays for high resolution spectroscopy with APEX. Shortly, we will operate
state-of-the-art instruments in all major atmospheric windows accessible from Llano de Chajnantor. CHAMP+, a dual-color 2×7 element heterodyne array for operation in the 450 μm and 350 μm atmospheric windows is in operation since late 2007. With its
state-of-the-art SIS detectors and wide tunable local oscillators, its cold optics with single sideband filters and with 3 GHz of processed IF bandwidth per pixel, CHAMP+ does provide outstanding observing capabilities. The Large APEX sub-Millimeter Array (LAsMA) is in the final design phase, with an installation goal in 2009. The receiver will operate 7 and 19 pixels in the lower submillimeter windows, 285-375 GHz and 385-520 GHz, respectively. The front-ends are served by an array of digital wideband Fast Fourier Transform spectrometers currently processing up to 32×1.5 (optionally 1.8) GHz of bandwidth. For CHAMP+, we process 2.8 GHz of instantaneous bandwidth (in 16.4 k channels) for each of the 14 pixels.
CHAMP+, a dual-color 2 × 7 element heterodyne array for operation in the 450 μm and 350 μm atmospheric windows is under development. The instrument, which is currently undergoing final evaluation in the laboratories, will be deployed for commissioning at the APEX telescope in August this year.
With its state-of-the-art SIS detectors and wide tunable local oscillators, its cold optics with SSB filters and with 2 GHz of usable IF bandwidth per pixel, CHAMP+ will provide unmatched observing capabilities for the APEX community. The optics allows for simultaneous observations in both colors. For both sub-arrays a hexagonal arrangement with closest feasible spacing of the pixels on sky (2×Θmb) was chosen, which, in scanning mode, will provide data sampled with half-beam spacing. The front-end is connected to a flexible autocorrelator array with a total bandwidth of 32 GHz and 32768 spectral channels, subdivided into 32 IF bands of 1 GHz and 1024 channels each.
R. Güsten, R. Booth, C. Cesarsky, K. Menten, C. Agurto, M. Anciaux, F. Azagra, V. Belitsky, A. Belloche, P. Bergman, C. De Breuck, C. Comito, M. Dumke, C. Duran, W. Esch, J. Fluxa, A. Greve, H. Hafok, W. Häupl, L. Helldner, A. Henseler, S. Heyminck, L. Johansson, C. Kasemann, B. Klein, A. Korn, E. Kreysa, R. Kurz, I. Lapkin, S. Leurini, D. Lis, A. Lundgren, F. Mac-Auliffe, M. Martinez, J. Melnick, D. Morris, D. Muders, L. Nyman, M. Olberg, R. Olivares, M. Pantaleev, N. Patel, K. Pausch, S. Philipp, S. Philipps, T. Sridharan, E. Polehampton, V. Reveret, C. Risacher, M. Roa, P. Sauer, P. Schilke, J. Santana, G. Schneider, J. Sepulveda, G. Siringo, J. Spyromilio, K.-H. Stenvers, F. van der Tak, D. Torres, L. Vanzi, V. Vassilev, A. Weiss, K. Willmeroth, A. Wunsch, F. Wyrowski
APEX, the Atacama Pathfinder Experiment, has been successfully commissioned and is in operation now. This novel submillimeter telescope is located at 5107 m altitude on Llano de Chajnantor in the Chilean High Andes, on what is considered one of the world's outstanding sites for submillimeter astronomy. The primary reflector with 12 m diameter has been carefully adjusted by means of holography. Its surface smoothness of 17-18 μm makes APEX suitable for observations up to 200 μm, through all atmospheric submm windows accessible from the ground.
Rolf Guesten, Geoffrey Ediss, Frederic Gueth, K. Gundlach, H. Hauschildt, Christoph Kasemann, Thomas Klein, Jacob Kooi, A. Korn, I. Kramer, Henry LeDuc, H. Mattes, K. Meyer, E. Perchtold, M. Pilz, R. Sachert, M. Scherschel, P. Schilke, G. Schneider, J. Schraml, Detlef Skaley, Ronald Stark, W. Wetzker, H. Wiedenhover, W. Wiedenhover, S. Wongsowijoto, F. Wyrowski
A 16-element SIS heterodyne array for operation in the 625 micrometer atmospheric window is under development at the MPIfR. The array consists of 2 X 8 elements with closest feasible spacing of the pixels on the sky ((root)2 (DOT) (Theta) mb). The L.O. tuning range covers the astronomically important CI and the CO(4-3) transitions, and an IF bandwidth of 2 GHz (1200 kms-1) will permit mapping of extragalactic systems. For best system sensitivity the design allows for cold optics ( 15K) and single-sideband operation. The frontend will be linked to a flexible autocorrelator, with a maximum bandwidth of 2 GHz (2048 channels) for each of the 16 modules. In the high-resolution mode, 500 MHz of bandwidth can be operated with 8192 channels of 61 kHz spectral resolution. System components are currently undergoing final integration and critical evaluation in our laboratories. First astronomical commissioning is scheduled for later this year. The sensitivity expected with CHAMP, for e.g. carbon studies, will be unparalleled. With the full array in SSB operation the mapping speed will be enhanced by a factor of 50 - 100 compared to current single-pixel detectors.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.