KEYWORDS: Solar cells, Electrodes, Organic photovoltaics, Field effect transistors, Heterojunctions, Gold, Polymers, Metals, Thin film devices, Electron transport
The challenge to reversing the layer sequence of organic photovoltaics (OPVs) is to prepare a selective contact
bottom cathode and to achieve a suitable morphology for carrier collection in the inverted structure. We report the
creation of an efficient electron selective bottom contact based on a solution-processed Titania layer on top of Indium
Tin Oxide. The use of o-xylene as the casting solvent creates an efficient carrier collection network with little vertical
phase segregation, providing sufficient performance for both regular as well as inverted solar cells. We demonstrate
inverted layer sequence OPVs with AM 1.5-calibrated power conversion efficiencies of over 3%.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.