The United States Army Aviation and Missile Research, Development and Engineering Center (AMRDEC) has utilized Infrared (IR) cameras to analyze boundary layer transition on additively-manufactured and aluminum wings in half-scale wind tunnel testing. The primary goal of the testing was to collect transition data for validation of Computational Fluid Dynamic (CFD) models with traditional oil flow visualization methods. A secondary goal was to collect transition data using IR thermographic imagery. Using non-contact IR cameras allow for more measurements to be collected in a given time. This work focuses on the IR cameras, the testing (setup, results, and lessons learned), and post analysis of the data. Brief descriptions of the test assets and the cameras are given, followed by a description and discussion of strengths and weaknesses of different methods used to accentuate the thermal signature of the transitions. Lining the wing with a selfadhesive liner can increase the contrast of the transition signature passively, but active heating with a central heating element was shown not to be as effective. General lessons learned for test setup, camera selection, and techniques to increase thermal transition signature are provided within each section. By examining several runs, general observations about the airflow transitions are made. Image processing techniques were utilized to analyze the transition. These techniques and resulting toolsets for data analysis are described. Some of the initial results were analyzed to make some comparisons between the traditional oil flow visualization methods and the thermal imaging methods. The report shows that the oil does not affect the repeatability of the thermal signature, but that the transitions determined by the oil flow analysis and the thermal image do differ slightly. Also, the oil flow is able to visualize a region known as the laminar boundary layer separation, whereas, at this time, this phenomenon is still not apparent in the thermal imagery. Further analysis is ongoing to determine if that separation can actually be seen with this specific test configuration.
We report the development and initial testing of the Lockheed Martin first-article, single-stage, compact, coaxial, Fast Cooldown Pulse Tube Microcryocooler (FC-PTM). The new cryocooler supports cooling requirements for emerging large, high operating temperature (105-150K) infrared focal plane array sensors with nominal cooling loads of ~300 mW @105K @293K ambient. This is a sequel development that builds on our inline and coaxial pulse tube microcryocoolers reported at CEC 20137, ICC188,9, and CEC201510. The new FC-PTM and the prior units all share our long life space technology attributes, which typically have 10 year life requirements1. The new prototype microcryocooler builds on the previous development by incorporating cold head design improvements in two key areas: 1) reduced cool-down time and 2) novel repackaging that greatly reduces envelope. The new coldhead and Dewar were significantly redesigned from the earlier versions in order to achieve a cooldown time of 2-3 minutes-- a projected requirement for tactical applications. A design approach was devised to reduce the cold head length from 115mm to 55mm, while at the same time reducing cooldown time. We present new FC-PTM performance test measurements with comparisons to our previous pulse-tube microcryocooler measurements and design predictions. The FC-PTM exhibits attractive small size, volume, weight, power and cost (SWaP-C) features with sufficient cooling capacity over required ambient conditions that apply to an increasing variety of space and tactical applications.
We report the development and initial testing of the Lockheed Martin first-article, single-stage, compact, coaxial, Fast Cooldown Pulse Tube Microcryocooler (FC-PTM). The new cryocooler supports cooling requirements for emerging large, high operating temperature (105-150K) infrared focal plane array sensors with nominal cooling loads of ~300 mW @105K @293K ambient. This is a sequel development that builds on our inline and coaxial pulse tube microcryocoolers reported at CEC 20137, ICC188,9, and CEC201510. The new FC-PTM and the prior units all share our long life space technology attributes, which typically have 10 year life requirements1. The new prototype microcryocooler builds on the previous development by incorporating cold head design improvements in two key areas: 1) reduced cool-down time and 2) novel repackaging that greatly reduces envelope. The new coldhead and Dewar were significantly redesigned from the earlier versions in order to achieve a cooldown time of 2-3 minutes-- a projected requirement for tactical applications. A design approach was devised to reduce the cold head length from 115mm to 55mm, while at the same time reducing cooldown time. We present new FC-PTM performance test measurements with comparisons to our previous pulse-tube microcryocooler measurements and design predictions. The FC-PTM exhibits attractive small size, volume, weight, power and cost (SWaP-C) features with sufficient cooling capacity over required ambient conditions that apply to an increasing variety of space and tactical applications.
This report describes tasks comparing the simulated performance levels of infrared (IR) sensing systems in detecting, recognizing, and identifying (DRI) targets using the Night Vision Integrated Performance Model (NV-IPM) version 1.1. Both mid-wave infrared (MWIR) and long-wave infrared (LWIR) systems, chosen to represent the current state-of-the-art, were analyzed across various environmental conditions. These states included a range of both man-made and natural obscurants, selected to simulate atmospheric conditions commonly experienced throughout the world. This report investigates the validity of the NV-IPM, down-selects top-performing systems from an original set, and provides detailed performance analysis of these best-of-breed systems in various environmental scenarios. Six sensing systems, Indium-Antimonide (InSb) MWIR, Mercury-Cadmium-Telluride (MCT) MWIR, nBn InSb MWIR, Quantum Well Infrared Photodetector (QWIP) LWIR, uncooled LWIR, and dual-band MCT MWIR/LWIR system, were evaluated against a variety of environmental variations. Specifications for the IR systems were obtained from manufacturers or relevant published literature. Simulation results indicated the nBn InSb MWIR system as the strongest-performing system in many of the tests.
For over 30 years, the U.S. Army Aviation and Missile Research, Development, and Engineering Center (AMRDEC) has specialized in characterizing the performance of infrared (IR) imaging systems in the laboratory and field. In the late 90’s, AMRDEC developed the Automated IR Sensor Test Facility (AISTF) which allowed efficient deployment testing of aviation and missile IR sensor systems. More recently, AMRDEC has tested many uncooled infrared (UCIR) sensor systems that have size, weight, power, and cost (SWAPC) benefits for certain fielded U.S. Army imaging systems. To compensate for relatively poor detector sensitivities, most UCIR systems operate with very fast focal ratio or F-number (f/#) optics. AMRDEC has recently found that measuring the Noise Equivalent Temperature Difference (NETD) with traditional techniques used with cooled infrared systems produce biased results when applied to systems with faster f/# values or obscurations. Additionally, in order to compare these camera cores or sensor systems to one another, it is imperative to scale the NETD values for f/#, focus distance, and waveband differences accurately. This paper will outline proper measurement techniques to report UCIR camera core and system-level NETD, as well as demonstrate methods to scale the metric for these differences.
For over 30 years, the U.S. Army Aviation and Missile Research, Development, and Engineering Center (AMRDEC) has specialized in characterizing the performance of infrared (IR) imaging systems in the laboratory and field. In the late 90’s, AMRDEC developed the Automated IR Sensor Test Facility (AISTF) which allowed efficient deployment testing of Unmanned Aerial Systems (UAS) payloads. More recently, ImageJ has been used predominately as the image processing environment of choice for analysis of laboratory, field, and simulated data. The strengths of ImageJ are that it is maintained by the U.S. National Institute of Health, it exists in the public domain, and it functions on all major operating systems. Three new tools or “plugins” have been developed at AMRDEC to enhance the accuracy and efficiency of analysis. First, a Noise Equivalent Temperature Difference (NETD) plugin was written to process Signal Transfer Function (SiTF) and 3D noise data. Another plugin was produced that measures the Modulation Transfer Function (MTF) given either an edge or slit target. Lastly, a plugin was developed to measure Focal Plane Array (FPA) defects, classify and bin the customizable defects, and report statistics. This paper will document the capabilities and practical applications of these tools as well as profile their advantages over previous methods of analysis.
Infrared imaging is commonly used for performing thermography based on field calibration that simply relates image levels to apparent temperature levels using field blackbodies. Under normal conditions, the correlation between the image levels and blackbody temperature is strong, allowing conversion of the raw data into units of blackbody-equivalent temperature without consideration of other factors. However, if certain instrument anomalies are present, a compensation procedure that involves more in-depth sensor characterization may be required. The procedure, which uses an analysis of temperature-dependent dark current, optical emissions, and detector response, is described along with results for a specific case. The procedure involves first cold soaking a thermal camera and then observing the cooldown behavior of the sensor under non-stressing conditions. Variations in environmental temperature levels are then used to observe cooler performance and dark current levels. A multi-variate linear regression is performed that allows temperature-dependent dark current, lens emission, lens transmission, and detector quantum efficiency to be fully characterized. The resulting data describe for each image pixel a relationship between the scene temperature and the observed values of image signal, detector temperature, and camera temperature. The procedure has been applied successfully to a thermal imager used to collect field data while suffering from instrument anomalies due to a faulty cooler. Using the resulting characterization data for the pixel-dependent dark current, image data collected with the thermal imager was compensated. The compensation involved using spatial filtering to determine temperature shifts caused by the faulty cooler based on the predictable pattern of pixel-to-pixel variations in dark current. The estimated temperature shift was used to compute a compensation offset for each pixel based on its known dark current coefficient. The compensated image data, while still degraded, was sufficiently corrected for the predictable effects of dark current variations to allow valid thermography to be performed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.