The Center for High Angular Resolution Astronomy (CHARA) Array currently consists of 6 telescopes at fixed positions, connected by vacuum pipes to the delay lines. The CHARA Michelson Array Pathfinder (CMAP) project includes two major components: 1) a mobile telescope that can be placed at a number of locations, and 2) a fiber optic relay system to transport light to the beam combining facility. The telescope will be equipped with a custom-built instrument bench with adaptive optics and fiber injection. The light will be transported by optical fibers to the existing CHARA delay lines. In this contribution, we present the progress on the various subsystems needed to integrate the new telescope and beam transport method into the existing CHARA environment. We will also describe our efforts to find internal fringes with the new fibers.
The goal of the CHara ARray Integrated Optics Testbench (CHARIOT) is to establish a fully characterized (nulling) interferometry setup for on-sky tests of novel astrophotonic 2D or 3D beam combiners for the interferometry community worldwide. CHARIOT is planned for four telescope beams covering the J-, H-, and K-bands with plug-and-play fiber interfaces. Verifying novel astrophotonics on-sky with CHARIOT will enable the development of components and advances in instruments in many fields, including nulling and spectro-interferometry.
The Center for High Angular Resolution Astronomy (CHARA) Array is a six-element interferometer with baselines ranging from 34 to 331m. The Array has had many upgrades in recent years including new beam combiners: MYSTIC is a 6T combiner for K-band; SPICA is a 6T combiner for the visible R-band; and SILMARIL is a 3T combiner for high sensitivity in the H- and K-bands. A seventh, mobile telescope is now on site for use with fiber optics for beam transport. Observing time is available to the community through a program funded by NSF. The observing programs are solicited and peer-reviewed by NSF’s NOIRLab. Here we summarize the scientific work and the on-going technical advances of the CHARA Array.
The CHARA Array has added a 7th telescope to extend the existing 6 telescope array. The CHARA Michelson Array Pathfinder (CMAP) includes a 1m Planewave RC Telescope mounted in a custom designed mobile trailer and pier system. The telescope and trailer can be placed at multiple locations around the Mount Wilson Observatory site; each site consisting of a flat concrete pad with a novel pier design. Optical fibers will connect each site to the CHARA optical delay and combiner lab. This enables new short baselines of ∼17m for imaging the surfaces of large stars and new long baselines on the order of ∼600m for resolving small stars. There are two sites developed at the array for this telescope. In the future, there are plans to expand the array to greater than 1 km maximum baselines. These baselines will be used in conjunction with the existing 15 baselines that range from 34 to 331m. Moving such a telescope around the observatory presents some unique challenges. The telescope can make use of the same optical delay lines and beam combiners as the other CHARA Array telescopes.
The Michigan Young Star Imager at CHARA (MYSTIC) is a K-band interferometric beam combining instrument funded by the U.S. National Science Foundation, designed primarily for imaging sub-au scale disk structures around nearby young stars and to probe the planet formation process. Installed at the CHARA Array in July 2021, with baselines up to 331 m, MYSTIC provides a maximum angular resolution of λ / 2B ∼ 0.7 mas. The instrument injects phase-corrected light from the array into inexpensive, single-mode, polarization maintaining silica fibers, which are then passed via a vacuum feedthrough into a cryogenic dewar operating at 220 K for imaging. MYSTIC uses a high frame rate, ultra-low read noise SAPHIRA detector and implements two beam combiners: a six-telescope image plane beam combiner, based on the MIRC-X design, for targets as faint as 7.7 Kmag, as well as a four-telescope integrated optic beam-combiner mode using a spare chip leftover from the GRAVITY instrument. MYSTIC is co-phased with the MIRC-X (J + H band) instrument for simultaneous fringe-tracking and imaging and shares its software suite with the latter to allow a single observer to operate both instruments. We present the instrument design, review its operational performance, present early commissioning science observations, and propose upgrades to the instrument that could improve its K-band sensitivity to 10th magnitude in the near future.
The Center for High Angular Resolution Astronomy (CHARA) Array is a six-element interferometer with baselines ranging from 34 to 331 m. Three new beam combiners are entering operation: MYSTIC is a 6-telescope combiner for K-band; SPICA is a 6-telescope combiner for the visible R-band; and SILMARIL is a 3-telescope combiner for high sensitivity in H and K-bands. A seventh, portable telescope will use fiber optics for beam transport and will increase the baselines to 1 km. Observing time is available through a program funded by NSF. The programs are solicited and peer-reviewed by NSF’s National Optical-Infrared Astronomy Research Laboratory. The open community access has significantly expanded the range of astronomical investigations of stars and their environments. Here we summarize the scientific work and the on-going technical advances of the CHARA Array.
Much research has been done to show the possibilities of using long transport fibers in optical interferometry. The CHARA Michelson Array Pathfinder will extend the spatial coverage of the CHARA Array by adding a mobile 1-meter telescope connected by optical fibers. The pathfinder will operate in H-band and will explore baselines up to approximately 1 km, giving an angular resolution of 0.2 mas. The new telescope will be placed at short baselines to image the surfaces of large stars and at long baselines to resolve small stars. Here we describe the project and our progress on various subsystems.
The CHARA Array is the longest baseline optical interferometer in the world. Operated with natural seeing, it has delivered landmark sub-milliarcsecond results in the areas of stellar imaging, binaries, and stellar diameters. However, to achieve ambitious observations of faint targets such as young stellar objects and active galactic nuclei, higher sensitivity is required. For that purpose, adaptive optics are developed to correct atmospheric turbulence and non-common path aberrations between each telescope and the beam combiner lab. This paper describes the AO software and its integration into the CHARA system. We also report initial on-sky tests that demonstrate an increase of scientific throughput by sensitivity gain and by extending useful observing time in worse seeing conditions. Our 6 telescopes and 12 AO systems with tens of critical alignments and control loops pose challenges in operation. We describe our methods enabling a single scientist to operate the entire system.
The CHARA Array is an optical/infrared interferometer that combines the light from six 1-meter telescopes. With baselines ranging from 34 to 331 meters, CHARA provides sub-milliarcsecond resolution to measure stellar diameters, image stellar surfaces, resolve close binary companions, and study circumstellar environments. In this paper, we present recent highlights from the CHARA Array, focusing on the implementation of adaptive optics, the ongoing development of next generation beam combiners, an update on the community access program, and a discussion about future developments.
MIRC-X is a six telescope beam combiner at the CHARA array that works in J and H wavelength bands and provides an angular resolution equivalent to a B=331m diameter telescope. The legacy MIRC combiner has delivered outstanding results in the fields of stellar astrophysics and binaries. However, we required higher sensitivity to make ambitious scientific measurements of faint targets such as young stellar objects, binary systems with exoplanets, and active galactic nuclei. For that purpose, MIRC-X is built and is offered to the community since mid-2017. MIRC-X has demonstrated up to two magnitudes of improved faint magnitude sensitivity with the best-case H <= 8. Here we present a review of the instrument and present early science results, and highlight some of our ongoing science programs.
The CHARA Array is a six-element, optical/NIR interferometer, which currently has the largest operational baselines in the world. The Array is operated by Georgia State University and is located at the Mount Wilson Observatory in California. The Array thrives thanks to members of the CHARA consortium that includes LESIA (Observatoire de Paris), Observatoire de la Cote dAzur, University of Michigan, Sydney University, Australian National University, and University of Exeter. Here we give a brief introduction to the Array infrastructure with a focus on a developing Adaptive Optics (AO) program, the new community access program funded by the NSF, and recent science results.
The CHARA Array, operated by Georgia State University, is located at Mount Wilson Observatory just north of Los Angeles in California. The CHARA consortium includes many groups, including LIESA in Paris, Observatoire de la Cote d’Azur, the University of Michigan, Sydney University, the Australian National University, the NASA Exoplanet Science Institute, and most recently the University of Exeter. The CHARA Array is a six-element optical/NIR interferometer, and for the time being at least, has the largest operational baselines in the world. In this paper we will give a brief introduction to the array infrastructure with a focus on our Adaptive Optics program, and then discuss current funding as well as opportunities of funding in the near future.
The Optical interferometry DataBase (OiDB) aims at facilitating the access to science-ready data provided by various existing or decommissioned interferometers. The first version of OiDB has been released in June 2015. Today it contains more than 5000 OIFITS datafiles including the full collection of PIONIER data since 2011. All these reduced data are made publicly available and easily downloadable from OiDB. After presenting the characteristics of OiDB, we analyse how the community made use of it during this first year of operation and how we will improve it.
We initiated a multi-technique campaign to understand the physics and properties of the massive binary system MWC 314. Our observations included optical high-resolution spectroscopy and Johnson photometry, nearinfrared spectrophotometry, and K′−band long-baseline interferometry with the CHARA Array. Our results place strong constraints on the spectroscopic orbit, along with reasonable observations of the phase-locked photometric variability. Our interferometry, with input from the spectrophotometry, provides information on the geometry of the system that appears to consist of a primary star filling its Roche Lobe and loosing mass both onto a hidden companion and through the outer Lagrangian point, feeding a circumbinary disk. While the multi-faceted observing program is allowing us to place some constraints on the system, there is also a possibility that the outflow seen by CHARA is actually a jet and not a circumbinary disk.
In this paper, we review the current performance of the VEGA/CHARA visible spectrograph and make a review of
the most recent astrophysical results. The science programs take benefit of the exceptional angular resolution, the
unique spectral resolution and one of the main features of CHARA: Infrared and Visible parallel operation. We
also discuss recent developments concerning the tools for the preparation of observations and important features
of the data reduction software. A short discussion of the future developments will complete the presentation,
directed towards new detectors and possible new beam combination scheme for improved sensitivity and imaging
capabilities.
KEYWORDS: Visibility, Interference (communication), Telescopes, Fringe analysis, Data analysis, Mirrors, Signal to noise ratio, Interferometry, Calibration, Camera shutters
The CHARA Array is a six telescope optical/IR interferometer run by the Center for High Angular Resolution
Astronomy of Georgia State University and is located at Mount Wilson Observatory just to the north of Los
Angeles California. The CHARA Array has the largest operational baselines in the world and has been in regular
use for scientific observations since 2004. Our most sensitive beam combiner capable of measuring closure phases
is the CLassic Interferometry with Multiple Baselines beam combiner known as CLIMB. In this paper we discuss
the design and layout of CLIMB with a particular focus on the data analysis methodology. This analysis is
presented in a very general form and will have applications in many other beam combiners. We also present
examples of on sky data showing the precision and stability of both amplitude and closure phase measurements.
Rotation plays a crucial role in the shaping and evolution of a star. Widely incorporated into early and late-stage stellar models, rotational effects remain poorly understood in main-sequence stars, mainly due to the absence of observations challenging contemporary models. The Precision Astronomical Visible Observations (PAVO) instrument, located at the Center for High Angular Resolution Astronomy (CHARA) array, provides the highest angular resolution yet achieved (0.3 mas) for stars V=8 magnitude and brighter. We describe instrumental techniques and advances implemented in PAVO@CHARA to observe heavily resolved targets and yield well calibrated closure phases which are key milestones on the pathway to delivery of the first-ever image in the visible of fast-rotating main-sequence star.
The CHARA Array is a six-telescope optical/IR interferometer managed by the Center for High Angular Resolution
Astronomy of Georgia State University and located at Mount Wilson Observatory in the San Gabriel Mountains
overlooking Pasadena, California. The CHARA Array has the longest operational baselines in the world and has been in
regular use for scientific observations since 2005. In this paper we give an update of instrumentation improvements,
primarily focused on the beam combiner activity. The CHARA Array supports seven beam combiners: CHARA
CLASSIC, a two-way high-sensitivity K/H/J band system; CLIMB, a three-way K/H/J open-air combiner; FLUOR, a
two-way K-band high-precision system; MIRC, a four/six-way H/K-band imaging system; CHAMP, a six-way K-band
fringe tracker; VEGA, a four-way visible light high spectral resolution system; and PAVO, a three-way visible light high
sensitivity system. We also present an overview of science results obtained over the last few years, including some recent imaging results.
This paper presents the current status of the VEGA (Visible spEctroGraph and polArimeter) instrument installed
at the coherent focus of the CHARA Array, Mount Wilson CA. Installed in september 2007, the first science
programs have started during summer 2008 and first science results are now published. Dedicated to high angular (0.3mas) and high spectral (R=30000) astrophysical studies, VEGA main objectives are the study of circumstellar environments of hot active stars or interactive binary systems and a large palette of new programs dedicated to fundamental stellar parameters. We will present successively the main characteristics of the instrument and its current performances in the CHARA environment, a short summary of two science programs and finally we will develop some studies showing the potential and difficulties of the 3 telescopes mode of VEGA/CHARA.
The CHARA Array is a six-telescope optical/IR interferometer operated by the Center for High Angular Resolution
Astronomy of Georgia State University and is located at Mount Wilson Observatory just to the north of Los Angeles
California. The CHARA Array has the largest operational baselines in the world and has been in regular use for scientific
observations since 2004. In this paper we give an update of instrumentation improvements, primarily focused on the
beam combiner activity. The CHARA Array supports seven beam combiners: CHARA CLASSIC, a two-way high
sensitivity K/H/J band system; CLIMB, a three-way K/H/J open air combiner, FLUOR, a two-way K band high
precision system; MIRC, a four/six-way H/K band imaging system; CHAMP, a six way K band fringe tracker; VEGA, a
four way visible light high spectral resolution system; and PAVO, a three-way visible light high sensitivity system. The
paper will conclude with a review of science results obtained over the last few years, including our most recent imaging results.
The CHARA Array is a six telescope optical/IR interferometer run by the Center for High Angular Resolution
Astronomy of Georgia State University (GSU) and is located at Mount Wilson Observatory just to the north of Los
Angeles, California. The CHARA Array has the largest operational baselines in the world and has been in regular use for
scientific observations since 2004. In this paper we give an update of instrumentation improvements, primarily focused
on the beam combiner activity. The CHARA Array supports seven beam combiners: CHARA CLASSIC, a two way
high sensitivity K/H band system; CLIMB, an upgrade to CLASSIC that includes closure phase measurements; FLUOR,
a two way K band high precision system; MIRC, a six way H/K band imaging system; CHAMP, a six way K band fringe
tracker; VEGA, a 4 way visible light high spectral resolution system; and PAVO, a 3 way visible light high sensitivity
system. The paper will conclude with a brief review of some science results obtained over the last few years.
The VEGA spectrograph and polarimeter has been recently integrated on the visible beams of the CHARA
Array. With a spectral resolution up to 35000 and thanks to operation at visible wavelengths, VEGA brings
unique capabilities in terms of spatial and spectral resolution to the CHARA Array. We will present the main
characteristics of VEGA on CHARA, some results concerning the performance and a preliminary analysis of the
first science run.
The use of high-resolution techniques for detecting binary and multiple star systems, such as speckle interferometry, and extensive spectroscopic survey efforts have led to the discovery of stellar systems over a broad range of orbital periods. However, there remains a gap between these two techniques, wherein neither is sensitive to detection of companions. Thus, it is possible that some nearby stars may have companions that have been overlooked. Using the longest baselines of the CHARA Array (~275-330 m), we are examining 158 nearby F and G dwarfs previously included in speckle interferometry and radial velocity surveys. Included in this sample are previously unresolved double- and single-lined spectroscopic binaries that show separated fringe packets measured on two nearly perpendicular baselines to determine true position angle and angular separation. Specifically, we are exploring the spectroscopic sample of Duquennoy and Mayor and include selected systems from the CHARA Catalog of Orbital Elements of Spectroscopic Binaries that have predicted separations that fall in this gap. In addition to the search for new companions, we will attempt to use astrometric data to determine orbital inclination in conjunction with previously determined spectroscopic orbits for accurate mass determination. We intend to utilize the Array to more fully explore the undersampled regime of approximately 5-50 mas to characterize the completeness of the multiplicity in the stellar neighborhood.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.