Recently, image captioning has received much attention from the artificial-intelligent (AI) research community. Most of the current works follow the encoder-decoder machine translation model to automatically generate captions for images. However, most of these works used Convolutional Neural Network (CNN) as an image encoder and Recurrent Neural Network (RNN) as a decoder to generate the caption. In this paper, we propose a sequence-to-sequence model that uses RNN as an image encoder that follows the encoder-decoder machine translation model, such that the input to the model is a sequence of images that represents the objects in the image. These objects are ordered based on their order in the captions. We demonstrate the results of the model on Flickr30K dataset and compare the results with the state-ofthe-art methods that use the same dataset. The proposed model outperformed the state-of-the-art methods on all metrics.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.