Significance: Surgery is often paramount in the management of many solid organ malignancies because optimal resection is a major factor in disease-specific survival. Cancer surgery has multiple challenges including localizing small lesions, ensuring negative surgical margins around a tumor, adequately staging patients by discriminating positive lymph nodes, and identifying potential synchronous cancers. Intraoperative molecular imaging (IMI) is an emerging potential tool proposed to address these issues. IMI is the process of injecting patients with fluorescent-targeted contrast agents that highlight cancer cells prior to surgery. Over the last 5 to 7 years, enormous progress has been achieved in tracer development, near-infrared camera approvals, and clinical trials. Therefore, a second biennial conference was organized at the University of Pennsylvania to gather surgical oncologists, scientists, and experts to discuss new investigative findings in the field. Our review summarizes the discussions from the conference and highlights findings in various clinical and scientific trials.
Aim: Recent advances in IMI were presented, and the importance of each clinical trial for surgical oncology was critically assessed. A major focus was to elaborate on the clinical endpoints that were being utilized in IMI trials to advance the respective surgical subspecialties.
Approach: Principal investigators presenting at the Perelman School of Medicine Abramson Cancer Center’s second clinical trials update on IMI were selected to discuss their clinical trials and endpoints.
Results: Multiple phase III, II, and I trials were discussed during the conference. Since the approval of 5-ALA for commercial use in neurosurgical malignancies, multiple tracers and devices have been developed to address common challenges faced by cancer surgeons across numerous specialties. Discussants also presented tracers that are being developed for delineation of normal anatomic structures that can serve as an adjunct during surgical procedures.
Conclusions: IMI is increasingly being recognized as an improvement to standard oncologic surgical resections and will likely advance the art of cancer surgery in the coming years. The endpoints in each individual surgical subspecialty are varied depending on how IMI helps each specialty solve their clinical challenges.
The aim in brain tumor surgery is maximal tumor resection with minimal damage of normal neuronal tissue. Today diagnosis of tumor and definition of tumor borders intraoperatively is based on various visualization methods as well as on the histopathologic examination of a limited number of biopsy specimens via frozen sections. Unfortunately, intraoperative histopathology bears several shortcomings, and many biopsies are inconclusive. Therefore, the desirable treatment could be to have the ability to identify intraoperative cellular structures, and differentiate tumor from normal functional brain tissue on a cellular level. To achieve this goal new technological equipment integrated with new surgical concepts is needed.Confocal Laser Endomicroscopy (CLE) is an imaging technique which provides microscopic information of tissue in real-time. We are able to use these technique to perform intraoperative “optical biopsies” in bringing the microscope inside to the patients brain through miniaturized fiber-optic probes, and allow real-time histopathology.
In our knowledge we are worldwide the only one neurosurgical group using CLE intraoperative for brain tumor surgery. We can detect and characterize intraoperative tumor cells, providing immediate online diagnosis without the need for frozen sections. It also provides delineation of borders between tumor and normal tissue on a cellular level, making surgical margins more accurate than ever before. The applications of CLE-assisted neurosurgery help to accurate the therapy by extending the resection borders and protecting the functionality of normal brain tissue in critical eloquent areas.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.