Controlling and manipulating individual quantum systems underpins the development of scalable quantum technologies. Hexagonal boron nitride (hBN) is emerging as an exceptional platform for applications in quantum photonics. The two-dimensional van der Waals (vdW) crystal hosts single photon emitting defects (quantum emitters) opening new functionality currently inaccessibly with other 3D quantum sources. Due to the two-dimensional nature of the crystal, hBN is an ideal material to integrate into vdW heterostructure devices. These devices have recently been shown to enable electrical modulation of single photon emission. Additionally, the study of the dephasing mechanisms of these sources helps assess the future utilization of hBN emitters in quantum interference experiments.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.