This talk will highlight opportunities for terahertz science and technology from nonlinear integrated photonic circuits by exploring waveguides, resonators and terahertz antennas. Their present and future applications in metrology, emission and waveform control are discussed.
The metrology of terahertz waves is a prerequisite for future applications in communications, sensing or spectroscopy. Electro-optic transduction, the technique by which a terahertz signal is mapped onto an optical or near-infrared signal, has emerged as one of the most sensitive metrology techniques that also provides sub-picosecond temporal resolution. As such, it has been employed to detect quantum terahertz fields for the first time. Recent advances in the miniaturization of these transducers target increased sensitivities, a small footprint and compatibility with large photonic architectures. In this talk, I will outline the basics of electric field metrology at the quantum limit and discuss how integrated photonics could open entirely new avenues in the area of spatially and temporally multiplexed terahertz detection.
Since the emergence of nanoscale photonic systems to tailor light at-will, electro-optic transducers have become critical components to link the optical domain further with the electronic domain. Many electro-optic transducers have been reported for integrated photonic circuits that are ideally suited for fiber-based applications. Instead, free-space electro-optic transducers could target entirely different applications that require a combined in-plane and time-domain control of freely propagating light at high speeds. Here, we demonstrate nano-engineered free-space electro-optic transducers that combine low-loss dielectric Mie resonators arranged into a meta-array and high-performance electro-optic molecules. We discuss how various design parameters influence the tuning of optical resonances which we show to reach up to 20 nm at a center wavelength of 1550 nm.
We demonstrate an electrically tunable metasurface from an array of nanoresonators coated by a single layer of electro-optic molecules that are embedded in a polymer matrix. By periodic poling of the non-linear coating in plane, we tune the resonant frequency of the array under an applied bias at high speeds and over a broad range in the near-infrared.
Only recently, a novel type of intensity autocorrelator in the time-domain has been reported for the Terahertz frequency range. The technique is based on fast electro-optic sampling in a double beam configuration and its temporal resolution is ultra-fast, as short as only few hundreds of femtoseconds. In particular, the self-referencing character of the technique is suitable for any type of source, including free-running sources. These unique characteristics enable therefore the investigation of the output profile of Terhertz Quantum Cascade Laser based Frequency Combs, with typical roundtrip times of few tens of picoseconds. The output dynamics of such devices have been investigated theoretically by Maxwell-Bloch equations and experimentally using Shifted Wave Interference Fourier Transform Spectroscopy. In this work, we present the results of the direct measurement of intensity autocorrelations of a Terahertz comb around 2.5 THz, when operated in the comb and high-noise regime, with radio-frequency beatnotes of 800 Hz and few MHz, respectively. We find the laser to be both amplitude- and frequency-modulated in both regimes, with a modulation ratio of the intensity of roughly 90 percent.The technique might come to use in future for the measurement of free-running pulses at Terahertz frequencies with high temporal resolution.
Recent work has been showing the possibility of generating frequency combs at terahertz frequencies using terahertz quantum cascade lasers. The main efforts so far were on getting the laser to work in a stable comb operation over an as broad as possible spectral bandwidth. Another issue is the scattered farfield of such combs due to their subwavelength facets of the used metal-metal waveguide. In contrast to single mode lasers the monolithic approaches of distributed feedback lasers or photonic crystals cannot be used. We present here a monolithic broadband extractor compatible with frequency comb operation based on the concept of an end-fire antenna. The antenna can be fabricated using standard fabrication techniques. It has been designed to support a bandwidth of up to 600 GHz at a central frequency of 2.5 THz. The fabricated devices show single lobed farfields with only minor asymmetries, increased output power along an increased dynamical range of frequency comb operation. A side-absorber schematics using a thin film of Nickel has been used to suppress any higher-order lateral modes in the laser. The reported frequency combs with monolithic extractors are ideal candidates for spectroscopic applications at terahertz frequencies using a self-detected dual-comb spectroscopy setup due to the increased dynamical range along with the improved farfield leading to more output power of the frequency combs.
Recently, intensity correlation measurements have been reported for the first time in the Terahertz range, where a time-domain version of a Hanbury Brown Twiss setup based on electro-optic sampling was employed. This technique proved its usefulness for fundamental studies of photon correlations of bunched (thermal) and Poissonian (coherent) light, but not only so. Also in practical applications, it has been employed to determine the temporal emission pattern of Terahertz Quantum Cascade Laser based Frequency Combs, which are very promising devices for future highly integrated spectrometers. The key parameter of this technique is its short temporal resolution. Up to date, the technique still does not provide the necessary sensitivity for exploring the yet vacuous regime of single photons in the terahertz. In this work we present our recent efforts for increasing the sensitivity of electro-optic sampling, by means of cryogenic cooling and novel organic materials for the Terahertz range. In particular, we present a novel device for collinear electro-optic detection, which features a high-aspect ratio antenna on a quartz substrate with a plasmonic gap filled by electro-optic molecules.
The quantum nature of photonic systems is reflected in the photon statistics of the light they emit. Therefore, the development of quantum optics tools with single photon sensitivity and excellent temporal resolution is paramount to the development of exotic sources, and is particularly challenging in the THz range where photon energies approach kbT at T=300 K. Here, we report on the first room temperature measurement of field g1(τ) and intensity correlations g2(τ) in the THz range with sub-cycle temporal resolution (146 fs) over the bandwidth 0.3-3 THz, based on electro-optic sampling. With this system, we are able to measure the photon statistics at threshold of a THz Quantum Cascade Laser.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.