Reducing noise in a video sequence is of vital important in many real-world applications. One popular method is block matching collaborative filtering. However, the main drawback of this method is that noise standard deviation for the whole video sequence is known in advance. In this paper, we present a tensor based denoising framework that considers 3D patches instead of 2D patches. By collecting the similar 3D patches non-locally, we employ the low-rank tensor decomposition for collaborative filtering. Since we specify the non-informative prior over the noise precision parameter, the noise variance can be inferred automatically from observed video data. Therefore, our method is more practical, which does not require knowing the noise variance. The experimental on video denoising demonstrates the effectiveness of our proposed method.
KEYWORDS: Cell phones, Brain-machine interfaces, Simulation of CCA and DLA aggregates, Electroencephalography, Brain, Computing systems, Electrodes, Visualization, Tablets, Target detection
Brain computer interface (BCI) systems based on the steady state visual evoked potential (SSVEP) provide higher information transfer rates and require shorter training time than BCI systems using other brain signals. It has been widely used in brain science, rehabilitation engineering, biomedical engineering and intelligent information processing. In this paper, we present a real-time mobile phone dialing system based on SSVEP, and it is more portable than other dialing system because the flashing dial interface is set on a small tablet. With this online BCI system, we can take advantage of this system based on SSVEP to identify the specific frequency on behalf of a number using canonical correlation analysis (CCA) method and dialed out successfully without using any physical movements such as finger tapping. This phone dialing system will be promising to help disable patients to improve the quality of lives.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.