To compare the optical properties of the human retina, 3-D volumetric images of the same eye are acquired with two nearly identical optical coherence tomography (OCT) systems at center wavelengths of 845 and 1060 nm using optical frequency domain imaging (OFDI). To characterize the contrast of individual tissue layers in the retina at these two wavelengths, the 3-D volumetric data sets are carefully spatially matched. The relative scattering intensities from different layers such as the nerve fiber, photoreceptor, pigment epithelium, and choroid are measured and a quantitative comparison is presented. OCT retinal imaging at 1060 nm is found to have a significantly better depth penetration but a reduced contrast between the retinal nerve fiber, the ganglion cell, and the inner plexiform layers compared to the OCT retinal imaging at 845 nm.
Time domain Doppler optical coherence tomography (DOCT) is a promising non-invasive imaging system with high spatial (~20μm) and velocity resolution (~20μm/s) that can image microvascular blood flow. It is important to understand and account for the complicated 3D nature of small blood vessels. To address this problem, two realistic flow phantoms were designed with known geometries -- an occluded flow path to model vessel narrowing, and a Y-bifurcation to simulate vessel branching. The current DOCT system produces 2D images, which when stacked sequentially can yield 3D images of microstructure and perfusion-level blood flow. 3D reconstructions allow the investigation of internal flow profiles, including an abrupt stenosis in the occluded phantom. This research will help guide our image interpretation of in-vivo DOCT studies, including treatment response monitoring in animal tumours and endoscopic assessment of the human GI tract.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.