Many applications rely on thermal imagers to complement or replace visible light sensors in difficult imaging conditions. Recent advances in machine learning have opened the possibility of analyzing or enhancing images, yet these methods require large annotated databases. Training approaches that leverage data augmentation via simulated and synthetically-generated images could offer promising prospects. Here, we report on a method that uses generative adversarial nets (GANs) to synthesize images of a complementary contrast. Starting from a dual-modality dataset of co-registered visible and thermal images, we trained a GAN to generate synthetic thermal images from visible images and vice versa. Our results show that the procedure yields sharp synthesized images that might be used to augment dual-modality datasets or assist in visual interpretation, yet are also subject to the limitations imposed by contrast independence between thermal and visible images.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.