Cherenkov imaging provides a valuable tool for the quality assurance of dose homogeneity in total skin electron therapy (TSET), in which patients were treated in six different postures using the Stanford standing technique. The emitted Cherenkov signals can be captured by three Cherenkov cameras, converted to 2D dose maps after certain corrections, and projected onto the patient specific 3D model to evaluate the cumulative total skin dose distribution. This study aims to improve the accuracy and reliability of Cherenkov converted dose obtained from the combination of multi-view Cherenkov images. The extra correction factors are investigated by conducting manikin phantom experiments as well as GAMOS based Monte Carlo simulations, and validated with in vivo dosimetry (IVD). We have also calibrated the side cameras and achieved a straightforward conversion of all Cherenkov images into doses using only the front camera. We have improved the Cherenkov-to-dose correction and conversion method, significantly reducing the deviation between the Cherenkov-converted dose and IVD measurements.
Imaging Cherenkov photons emitted during radiation therapy can provide real-time information of the external beam field. It is well established that Cherenkov emission is correlative to dose deposited; however, differential photon energies and tissue attenuation properties, along with complicated camera geometries, entangle this relationship and introduce variability in the Cherenkov emission-to-dose ratio from patient-to-patient. This study aims to better understand the effects of optical properties, skin color, and patient-specific geometries (i.e. angle of camera incidence and curvature) on the Cherenkov emission-to-dose relationship. To do so, a series of phantom experiments were conducted with tissuesimulating optical phantoms and an andromorphic breast phantom in which optical properties, curvature, and camera angle of incidence were all examined as a function of normalized Cherenkov emission-to-dose. To acquire clinical Cherenkov data along with patient skin color, Cherenkov images and OSLD measurements for the ground-truth surface dose were collected weekly on 13 whole-breast radiotherapy patients, alongside high-resolution 3D color and texture scans. Phantom results suggest there to be a moderately strong correlation between dose percent error and patient curvature (R2 = 0.57), as well as angle of camera incidence (R2 = 0.56). Initial patient results suggest there to be a correlation between the redness of a patient’s skin, and the Cherenkov emission-to-dose ratio, with higher amounts of redness correlating to lower Cherenkov signal. By better characterizing these trends, we are potentially able to find generalizable optics-based corrections that improve the accuracy in mapping Cherenkov emission to real-time skin dose.
Cherenkov images can be used for the quality assurance of dose homogeneity in total skin electron therapy (TSET). For the dose mapping purpose, this study reconstructed the patient model from 3D scans using registration algorithms and computer animation techniques. The Cherenkov light emission of the patient’s surface was extracted from multi-view Cherenkov images, converted into dose distribution, and projected onto the patient’s 3D model, allowing for dose cumulation and evaluation. The projected result from multiple Cherenkov cameras provides additional information about Cherenkov emission on the sides of the patients, which improves the agreement between the Cherenkov converted dose and the OSLD measurements.
SignificanceHigh-energy x-ray delivery from a linear accelerator results in the production of spectrally continuous broadband Cherenkov light inside tissue. In the absence of attenuation, there is a linear relationship between Cherenkov emission and deposited dose; however, scattering and absorption result in the distortion of this linear relationship. As Cherenkov emission exits the absorption by tissue dominates the observed Cherenkov emission spectrum. Spectroscopic interpretation of this effects may help to better relate Cherenkov emission to ionizing radiation dose delivered during radiotherapy.AimIn this study, we examined how color Cherenkov imaging intensity variations are caused by absorption from both melanin and hemoglobin level variations, so that future Cherenkov emission imaging might be corrected for linearity to delivered dose.ApproachA custom, time-gated, three-channel intensified camera was used to image the red, green, and blue wavelengths of Cherenkov emission from tissue phantoms with synthetic melanin layers and varying blood concentrations. Our hypothesis was that spectroscopic separation of Cherenkov emission would allow for the identification of attenuated signals that varied in response to changes in blood content versus melanin content, because of their different characteristic absorption spectra.ResultsCherenkov emission scaled with dose linearly in all channels. Absorption in the blue and green channels increased with increasing oxy-hemoglobin in the blood to a greater extent than in the red channel. Melanin was found to absorb with only slight differences between all channels. These spectral differences can be used to derive dose from measured Cherenkov emission.ConclusionsColor Cherenkov emission imaging may be used to improve the optical measurement and determination of dose delivered in tissues. Calibration for these factors to minimize the influence of the tissue types and skin tones may be possible using color camera system information based upon the linearity of the observed signals.
The emergence of the Halcyon linear accelerator has allowed for increased patient throughput and improved treatment times for common treatment sites in radiation oncology. However, it has been shown that this can lead to increased surface dose in sites like breast cancer compared with treatments on conventional machines with flattened radiation beams. Cherenkov imaging can be used to estimate surface dose by detection of Cherenkov photons emitted in proportion to energy deposition from high energy electrons in tissue. Phantom studies were performed with both square beams in reference conditions and with clinical treatments, and dosimeter readings and Cherenkov images report higher surface dose (25% for flat phantom entrance dose, 5.9% for breast phantom treatment) from Halcyon beam deliveries than for equivalent deliveries from a TrueBeam linac. Additionally, the first Cherenkov images of a patient treated with Halcyon were acquired, and superficial dose was estimated.
Significance: The Cherenkov emission spectrum overlaps with that of ambient room light sources. Choice of room lighting devices dramatically affects the efficient detection of Cherenkov emission during patient treatment.
Aim: To determine optimal room light sources allowing Cherenkov emission imaging in normally lit radiotherapy treatment delivery rooms.
Approach: A variety of commercial light sources and long-pass (LP) filters were surveyed for spectral band separation from the red to near-infrared Cherenkov light emitted by tissue. Their effects on signal-to-noise ratio (SNR), Cherenkov to background signal ratio, and image artifacts were quantified by imaging irradiated tissue equivalent phantoms with an intensified time-gated CMOS camera.
Results: Because Cherenkov emission from tissue lies largely in the near-infrared spectrum, a controlled choice of ambient light that avoids this spectral band is ideal, along with a camera that is maximally sensitive to it. An RGB LED light source produced the best SNR out of all sources that mimic room light temperature. A 675-nm LP filter on the camera input further reduced ambient light detected (optical density > 3), achieving maximal SNR for Cherenkov emission near 40. Reduction of the room light signal reduced artifacts from specular reflection on the tissue surface and also minimized spurious Cherenkov signals from non-tissue features such as bolus.
Conclusions: LP filtering during image acquisition for near-infrared light in tandem with narrow band LED illuminated rooms improves image quality, trading off the loss of red wavelengths for better removal of room light in the image. This spectral filtering is also critically important to remove specular reflection in the images and allow for imaging of Cherenkov emission through clear bolus. Beyond time-gated external beam therapy systems, the spectral separation methods can be utilized for background removal for continuous treatment delivery methods including proton pencil beam scanning systems and brachytherapy.
Significance: Optical imaging of Cherenkov emission during radiation therapy could be used to verify dose delivery in real-time if a more comprehensive quantitative understanding of the factors affecting emission intensity could be developed.
Aim: This study aims to explore the change in diffuse Cherenkov emission intensity with x-ray beam energy from irradiated tissue, both theoretically and experimentally.
Approach: Derivation of the emitted Cherenkov signal was achieved using diffusion theory, and experimental studies with 6 to 18 MV energy x-rays were performed in tissue phantoms to confirm the model predictions as related to the radiation build-up factor with depth into tissue.
Results: Irradiation at lower x-ray energies results in a greater surface dose and higher build-up slope, which results in a ∼46 % greater diffusely emitted Cherenkov signal per unit dose at 6 MV relative to 18 MV x-rays. However, this phenomenon competes with a decrease in signal from less Cherenkov photons being generated at lower energies, a ∼44 % reduction at 6 versus 18 MV. The result is an emitted Cherenkov signal that is nearly constant with beam energy.
Conclusions: This study explains why the observed Cherenkov emission from tissue is not a strong function of beam energy, despite the known strong correlation between Cherenkov intensity and particle energy in the absence of build-up and scattering effects.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.