We present a brief review of the current state of the art of quantum computation with trapped ions, with particular emphasis on the problems caused by `heating' of the ions' motional degrees of freedom.
Experimental and theoretical studies at Los Alamos of nonlinear optical phenomena important to the design of the National Ignition Facility are summarized. These include measurements of nonlinear index coefficients, Raman scattering in atmospheric oxygen, and theoretical studies of harmonic conversion.
Using simple physical arguments we investigate the capabilities of a quantum computer based on cold trapped ions of the type recently proposed by Cirac and Zoller. From the limitations imposed on such a device by decoherence due to spontaneous decay, laser phase coherence times, ion heating and other possible sources of error, we derive bounds on the number of laser interactions and on the number of ions that may be used. As a quantitative measure of the possible performance of these devices, the largest number which may be factored using Shor's quantum factoring algorithm is determined for a variety of species of ion.
Conference Committee Involvement (3)
Quantum Optics and Quantum Information Transfer and Processing
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.