Compared to well established liquid based dye lasers, amplifying media based on amorphous organic thin films allow the realisation of versatile, cost effective and compact lasers. Aside from that, the materials involved are organic semiconductors, which in principle allow the fabrication of future electrically driven organic laser diodes. A highly promising, low-loss resonator geometry for these lasers is the distributed feedback (DFB) structure, which is based on a periodic modulation of the refractive index in the waveguide on the nanometer scale. By variation of the grating period Λ one may tune the laser emission within the gain spectrum of the amplifying medium. We will demonstrate organic lasers spanning the entire spectral region from 360-715 nm. Tuning ranges as large as 115 nm (λ = 598-713 nm) in the red spectral region and more than 30 nm (λ = 362-394 nm) in the UV render these novel lasers highly attractive for various spectroscopic applications. As the grating period Λ is typically between 100 nm and 400 nm the DFB resonators are fabricated by e-beam lithography. These gratings may, however, be used as masters to obtain an arbitrary amount of copies by nanoimprint lithography into plastic substrates. Therefore these lasers are very attractive even for single-use applications (e.g. in medicine and biotechnology). Today, the key challenge in the field is the realisation of the first electrically driven organic laser. Key pre-requisites are highly efficient amplifying material systems which allow for low threshold operation and charge transport materials that bring about the stability to sustain the necessary current densities, several orders of magnitude higher than in OLEDs. We will demonstrate diode structures operated electrically under pulsed conditions at current densities up to 760 A/cm2 with a product of the current density and the external quantum effciency (J×ηext) of 1.27 A/cm2. Mechanisms deteriorating the quantum efficieny at elevated current densities will be discussed.
Inverted organic light-emitting diodes showing light emission from
the top are discussed. Top-emitting organic light-emitting diodes
are required for next-generation active-matrix organic
light-emitting displays , as Si-driving circuitry has to be
incorporated into the display itself. We focus on hybrid anodes,
thereby giving a simple model for spin-coating of PEDOT:PSS on top
of an organic layer-stack, LiF-based cathodes and phosphorescent
emitters, allowing for highly efficient inverted organic light
emitting diodes. A maximum current efficiency of 55.4 cd/A at
140 cd/m2 and a maximum luminous efficiency of 17.2 lm/W at
50 cd/m2 has been obtained.
Top-emitting organic light-emitting diodes (OLEDS) fornext-generation active-matrix OLED-displays (AM-OLEDs) arediscussed. The emission of light via the conductive transparent top-contact is considered necessary in terms of integrating OLED-technology to standard Si-based driver circuitry. The inverted OLED configuration (IOLED) in particular allows for the incorporation of more powerful n-channel field-effect transistors preferentially used for driver backplanes in AM-OLED displays. The use of the highly conductive polymer PEDOT:PSS as hole injection layer yields anodes with an extremely low contact resistance. The non-destructive spin-coating is enabled by a hydrophobic buffer layer such as pentacene. The overlying transparent electrode was realized employing low-power radio-frequency magnetron sputter-deposition of indium-tin-oxide (ITO). Additionally, a cathode with an interfacially metal-doped electron-injecting layer is proposed. Hybrid inverted OLEDs utilizing the fluorescent emitter system Alq3:Ph-QAD allowed efficiencies of 2.7 lm/W around 150 cd/m2. Device efficiencies are increased by employing a phosphorescent dye Ir(ppy)3 doped into the hole-transporter TCTA. Such phosphorescent hybrid IOLEDs exhibit peak efficiencies of 19.6 cd/A and 5.8 lm/W at 127 cd/m2. Thus, the main requirements for a use of hybrid inverted IOLEDs in AM-OLED-displays are satisfied.
Top-emitting organic light-emitting diodes (OLEDS) for next-generation active-matrix OLED-displays (AM-OLEDs) are discussed. The emission of light via the conductive transparent top-contact is considered necessary in terms of integrating OLED-technology to standard Si-based driver circuitry. The inverted OLED configuration (IOLED) in particular allows for the incorporation of more powerful n-channel field-effect transistors preferentially used for driver backplanes in AM-OLED displays. To obtain low series resistance the overlying transparent electrode was realized employing low-power radio-frequency magnetron sputter-deposition of indium-tin-oxide (ITO). The devices introduce a two-step sputtering sequence to reduce damage incurred by the sputtering process paired with the buffer and hole transporting material pentacene. Systematic optimization of the organic growth sequence focused on device performance characterized by current and luminous efficiencies is conducted. Apart from entirely small-molecule-based IOLED that yield 9.0 cd/A and 1.6 lm/W at 1.000 cd/m2 a new approach involving highly conductive polyethylene dioxythiophene-polystyrene sulfonate (PEDOT:PSS) as anode buffers is presented. Such hybrid IOLEDs show luminance of 1.000 cd/m2 around 10 V at efficiencies of 1.4 lm/W and 4.4 cd/A.
Optically pumped organic semiconductor thin-films have been processed on first and second order distributed feedback gratings. The organic thin-films were made by co-evaporation of tris-(8-hydroxy quinoline)aluminium (Alq3) and the laser dye 4-(Dicyanomethylene)-2-methyl-6-(julolidin-4-yl-vinyl)-4H-pyran (DCM2). The DFB laser wavelength varied depending on the grating period between 647.8 nm and 668.6 nm for first order operation and between 626.7 nm and 640.1 nm for second order operation. By evaporating the same organic film on both resonator designs we could compare first and second order laser parameters. We measured laser output characteristics and determined threshold energy values for different wavelengths and for first and second order of the Bragg grating. The laser threshold energy of the first order organic DFB laser was reduced by a factor 8 compared to the second order laser. Minimum threshold energy density was measured for a first order sample with 13.8 μJ/cm2. Reducing the laser threshold value is especially important for future applications like electrically driven organic solid-state lasers, where it will be more difficult to reach the laser threshold excitation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.