KEYWORDS: 3D displays, Navigation systems, Stars, Computing systems, Visualization, Data analysis, Data modeling, Computer science, Chemical analysis, Chemical reactions
We have designed a system for presenting and graphically navigating four-variable data in a four-dimensional Cartesian environment. With full translational and rotational freedom, the system provides a 4D scene that can be explored and understood interactively. The system presents a four-dimensional environment to the user as a collection of 3D slices. Volunteers explored and solved randomly-generated 4D mazes of increasing complexity and size by traversing them to the end. Their ability to solve mazes improved significantly with
practice, reflecting an increasing ability to engage the 4D environment and demonstrating the viability of the system.
KEYWORDS: Sensors, Fiber Bragg gratings, Optical filters, Field programmable gate arrays, Analog electronics, Data communications, Optical fibers, Temperature metrology, Digital filtering, Fiber lasers
A fiber Brag grating sensor interrogator has been developed which is capable of gathering vectors of information from
individual fiber Bragg gratings by capturing the full optical spectrum 3 kHz. Using a field programmable gate array
with high speed digital-to-analog converters and analog-to-digital components, plus a kilohertz rate MEMS optical filter,
the optical spectrum can be scanned at rates in excess of 10 million nanometers per second, allowing sensor sampling
rates of many kilohertz while maintaining the necessary resolution to understand sensor changes. The autonomous
system design performs all necessary detection and processing of multiple sensors and allows spectral measurements to
be exported as fast as Ethernet, USB, or RS232 devices can receive it through a memory mapped interface. The high
speed - full spectrum - fiber Bragg grating sensor interrogator enables advanced interrogation of dynamic strain and
temperature gradients along the length of a sensor, as well as the use of each sensor for multiple stimuli, such as in
temperature compensation. Two examples are described, showing interrogation of rapid laser heating in an optical fiber,
as well as complex strain effects in a beam that had an engineered defect.
Advancements in portability and performance are described for a fiber optic sensor readout system capable of
monitoring wavelength-multiplexed sensors. The handheld sensor interrogator was designed to readily interface with
conglomerate sensor systems as a smart sensor node and process all spectral data within its own system in real time at 20
Hz for +/- 13 picometers resolution mode. Portability was demonstrated by flying the system on a miniature aerial
vehicle (MAV) which collected strain and temperature flight data for broadcast to a ground station. Additional
improvements upgraded the sensor measurement speed by two orders of magnitude.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.