With the pervasiveness of still and full-motion imagery in commercial and military applications, the need to ingest and
analyze these media has grown rapidly in recent years. Additionally, video hosting and live camera websites provide a
near real-time view of our changing world with unprecedented spatial coverage. To take advantage of these controlled
and crowd-sourced opportunities, sophisticated visual analytics (VA) tools are required to accurately and efficiently
convert raw imagery into usable information. Whether investing in VA products or evaluating algorithms for potential
development, it is important for stakeholders to understand the capabilities and limitations of visual analytics tools.
Visual analytics algorithms are being applied to problems related to Intelligence, Surveillance, and Reconnaissance
(ISR), facility security, and public safety monitoring, to name a few. The diversity of requirements means that a onesize-
fits-all approach to performance assessment will not work. We present a process for evaluating the efficacy of
algorithms in real-world conditions, thereby allowing users and developers of video analytics software to understand
software capabilities and identify potential shortcomings. The results-based approach described in this paper uses an
analysis of end-user requirements and Concept of Operations (CONOPS) to define Measures of Effectiveness (MOEs),
test data requirements, and evaluation strategies. We define metrics that individually do not fully characterize a system,
but when used together, are a powerful way to reveal both strengths and weaknesses. We provide examples of data
products, such as heatmaps, performance maps, detection timelines, and rank-based probability-of-detection curves.
Based on the success of four-telescope imaging with the Michigan Infrared Combiner (MIRC) on the CHARA
Array, our Michigan-based group will now upgrade our system to combine all six CHARA telescope simultaneously.
In order to make this observationally efficient, we have had to improve a number of subsystems and
commission new ones, including the new CHAMP fringe tracker, the introduction of photometric channels, the
upgrading of the realtime operating systems, and the obvious hardware and software upgrades of the control
system and the data pipeline. Here we will discuss the advantages of six-telescope operation, outline our upgrade
plans and discuss our current progress.
The CHARA Michigan Phase-tracker (CHAMP) is a real-time fringe tracker for the CHARA Array, a six-telescope
long baseline optical interferometer on Mount Wilson, California. CHAMP has been optimized for
tracking sensitivity at J, H, or K bands and is not meant as a science instrument itself. This ultimately results
in maximum sensitivity for all the science beam combiners that benefit from stabilized fringes. CHAMP was
designed, built, and tested in the laboratory at the University of Michigan and will be delivered to the CHARA
Array in 2008. We present the final design of CHAMP, highlighting some its key characteristics, including a novel
post-combination transport and imaging system. We also discuss testing and validation studies and present first
closed-loop operation in the laboratory.
We report the first scientific results from the Michigan Infrared Combiner (MIRC), including the first resolved
image of a main-sequence star besides the Sun. Using the CHARA Array, MIRC was able to clearly resolve the
well-known elongation of Altair's photosphere due to centrifugal distortion, and was also able to unambiguously
image the effect of gravity darkening. In this report, we also show preliminary images of the interacting binary
β Lyr and give an update of MIRC performance.
This paper wants to be a practical example in building a real-time data-acquisition and control system from scratch using relatively non-expensive PC hardware and open-source software. The practical example of building the control system for the Michigan Infrared Combiner (MIRC) at the CHARA interferometer will be used to give the reader a 'hands-on' experience in installing and configuring the RTAI-Fusion real-time operating system and developing a complete control system with it.
We present the design for a near-infrared (JHK) fringe tracker to be used at the CHARA Array, a long baseline optical interferometer located at Mount Wilson Observatory. The CHARA Michigan Phase-tracker (CHAMP) is being fabricated and tested at the University of Michigan and will be transported to the CHARA Array for general use. CHAMP is separate from the science combiners and can therefore be optimized for fringe tracking. It will modulate around fringe center by 1-2λ at up to 500 Hz and calculate phase offsets in real-time using a modified 'ABCD' method . Six pair-wise Mach-Zehnder combiners will phase the entire Array. We give an overview of the optical layout and discuss our design strategy. Components such as the path-length modulators, low-OH fiber transport system, 1024x1024 HAWAII-1 detector, and control computer are discussed.
Georgia State University's Center for High Angular Resolution Astronomy (CHARA) operates a multi-telescope, long-baseline, optical/infrared interferometric array on Mt. Wilson, California. We present an update on the status of this facility along with a sample of preliminary results from current scientific programs.
Georgia State University's Center for High Angular Resolution Astronomy (CHARA) operates a multi-telescope, long-baseline, optical/infrared interferometric array on Mt. Wilson, California. Since its inception, one of the primary scientific goals for the CHARA Array has been the resolution of spectroscopic binary stars, which offer tremendous potential for the determination of fundamental parameters for stars (masses, luminosities, radii and effective temperatures). A new bibliographic catalog of spectroscopic binary orbits, including a calculated estimate of the anticipated angular separation of the components, has been produced as an input catalog in planning observations with the Array. We briefly describe that catalog, which will be made available to the community on the Internet, prior to discussing observations obtained with our 330-m baseline during the fall of 2001 of the double-lined spectroscopic systems β Aur and β Tri. We also describe the initial results of an inspection of the extrasolar planetary system υ And.
The Center for High Angular Resolution Astronomy (CHARA) has constructed an array of six alt-az telescopes at Mount Wilson Observatory in southern California. Together with the central beam combining facility, the telescopes operate as an optical/near-infrared interferometer with a maximum baseline of 330 meters. Due to practicality and cost constraints, some of the long path delay required for path length compensation occurs out of vacuum. A
consequence is a spectrally dispersed beam along the optical axis which decreases fringe contrast. To combat this visibility loss, wedges of glass are placed in the beam to chromatically equalize path lengths. Each set of glass wedges is called a Longitudinal Dispersion Compensator (LDC).
The design and fabrication phases for the LDC systems are described. Beginning with the material selection process, a glass with similar dispersive qualities to air within the observing bandwidths was selected. Next was the optomechanical design which included custom engineered optical mounts for the glass wedges, high precision translation stages for automated thickness variation and calibration adjustments. Following this, the hardware driver, software controls, and the user interface were written. Finally, the LDC components were assembled, integrated into the Beam Synthesis Facility, and
tested. The quantified results are presented and demonstrate an improvement to the interferometric measurements.
During the 2001 observing season, the CHARA Array was in regular operation for a combined program of science, technical development, test, and commissioning. Interferometric science operations were carried out on baselines up to 330 meters -- the maximum available in the six-telescope array. This poster gives sample results obtained with the approximately north-south telescope pair designated S1-E1. At operating wavelengths in the K band, the 330 m baseline is well suited to diameter determinations for angular diameters in the range 0.6 - 1.2 milliarcseconds. This is a good
range for study of a wide range of hot stars. In this poster, angular
diameters for a set of A,B and F stars are compared to results derived from other sources. These confirm CHARA performance in the range 3-10% in visibility. The normal stars follow a normal spectral type - surface brightness relation, and a classical Be star deviates from the norm by an amount consistent with its apparent colors.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.