Recently, deep neural network (DNN) based adaptive optics systems were proposed to address the issue of latency in existing wavefront sensorless (WFS-less) aberration correction techniques. Intensity images alone are sufficient for the DNN model to compute the necessary wavefront correction, removing the need for iterative processes and allowing practical real-time aberration correction to be implemented. Specifically, we generate the desired aberration correction phase profiles utilizing a DNN based system that outputs a set of coefficients for 27 terms of Zernike polynomials. We present an experimental realization of this technique using a spatial light modulator (SLM) on real physical turbulence-induced aberration. We report an aberration correction rate of 20 frames per second in this laboratory setting, accelerated by parallelization on a graphics processing unit. There are a number of issues associated with the practical implementation of such techniques, which we highlight and address in this paper.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.