Sensors based on fiber optics are irreplaceable wherever immunity to strong electro-magnetic fields or safe operation in explosive atmospheres is needed. Furthermore, it is often essential to be able to monitor high temperatures of over 500°C in such environments (e.g. in cooling systems or equipment monitoring in power plants). In order to meet this demand, we have designed and manufactured a fiber optic sensor with which temperatures up to 900°C can be measured. The sensor utilizes multi-core fibers which are recognized as the dedicated medium for telecommunication or shape sensing, but as we show may be also deployed advantageously in new types of fiber optic temperature sensors. The sensor presented in this paper is based on a dual-core microstructured fiber Michelson interferometer. The fiber is characterized by strongly coupled cores, hence it acts as an all-fiber coupler, but with an outer diameter significantly wider than a standard fused biconical taper coupler, which significantly increases the coupling region’s mechanical reliability. Owing to the proposed interferometer imbalance, effective operation and high-sensitivity can be achieved. The presented sensor is designed to be used at high temperatures as a result of the developed low temperature chemical process of metal (copper or gold) coating. The hermetic metal coating can be applied directly to the silica cladding of the fiber or the fiber component. This operation significantly reduces the degradation of sensors due to hydrolysis in uncontrolled atmospheres and high temperatures.
Monitoring the geometry of an moving element is a crucial task for example in robotics. The robots equipped with fiber bend sensor integrated in their arms can be a promising solution for medicine, physiotherapy and also for application in computer games. We report an all-fiber intensity bend sensor, which is based on microstructured multicore optical fiber. It allows to perform a measurement of the bending radius as well as the bending orientation. The reported solution has a special airhole structure which makes the sensor only bend-sensitive. Our solution is an intensity based sensor, which measures power transmitted along the fiber, influenced by bend. The sensor is based on a multicore fiber with the special air-hole structure that allows detection of bending orientation in range of 360°. Each core in the multicore fiber is sensitive to bend in specified direction. The principle behind sensor operation is to differentiate the confinement loss of fundamental mode propagating in each core. Thanks to received power differences one can distinguish not only bend direction but also its amplitude. Multicore fiber is designed to utilize most common light sources that operate at 1.55 μm thus ensuring high stability of operation. The sensitivity of the proposed solution is equal 29,4 dB/cm and the accuracy of bend direction for the fiber end point is up to 5 degrees for 15 cm fiber length. Such sensitivity allows to perform end point detection with millimeter precision.
We present research on optical fiber sensors based on microstructured multi-core fiber. Elaborated sensor can be advantageously used in hard-to-reach areas by taking advantage of the fact, that optical fibers can play both the role of sensing elements and they can realize signal delivery. By using the sensor, it is possible to increase the level of the safety in the explosive endangered areas, e.g. in mine-like objects. As a base for the strain remote sensor we use dual-core fibers. The multi-core fibers possess a characteristic parameter called crosstalk, which is a measure of the amount of signal which can pass to the adjacent core. The strain-sensitive area is made by creating the tapered section, in which the level of crosstalk is changed. Due to this fact, we present broadened conception of fiber optic sensor designing. Strain measurement is realized thanks to the fact, that depending on the strain applied, the power distribution between the cores of dual-core fibers changes. Principle of operation allows realization of measurements both in wavelength and power domain.
This paper focuses on the utilization of crosstalk phenomenon to construct an innovative strain sensor. In our experiments, we take advantage of special fiber design and technology of fiber post-processing in order to receive strain sensing areas. We present results, which indicate possibility of achieving strain sensitivity at level of several mε/nm with negligible temperature cross-sensitivity at the same time. Furthermore after coating the sensor with the developed copper and gold coatings, it can be easily applied in extremely high temperature (e.g. 500 – 800 ⁰C) and/or aggressive media applications.
Multi-core fibers are recognized as the medium designed to be used in telecommunication for space division multiplexing. At the same time, they can be advantageously used in sensor technology. The most crucial parameter for multi-core fibers is crosstalk, as its presence at a high level is found to be highly undesirable in telecommunication applications. However, this phenomenon can be used advantageously in the construction of new types of fiber optic sensor.
For the strain sensor, we used a dual-core microstructured fiber. In the research presented, we take advantage of the technology of fiber post-processing, namely fiber tapering. This treatment, which enables changes in the conditions for interference between supermodes, makes the fiber sensitive to elongation. In the un-tapered section, supermodes do not interfere efficiently (crosstalk <-50 dB), whereas in the tapered section the crosstalk increases significantly (crosstalk = 0 dB meaning all the power from one core can be transferred to the neighboring core), creating a strain sensitive area. The distribution of power between the cores of a multi-core fiber at the output of the sample depends on the elongation of the sample. The strain value can be read off both in the domain of power and wavelength. Research results show that sensor performance can be adjusted by changing the taper length and ratio. The results presented are promising for the construction of a temperature independent strain sensor, whose strain sensitivity (17nm/mε) is far better than optical fiber sensors based on Fiber Bragg Gratings. Meanwhile, the temperature sensitivity is negligible assuring no cross-sensitivity.
We present the novel 7-core and 19-core hole-assisted fibers designed to satisfy the most demanding requirements of the ITU-T G.657.B3 recommendation for bend-insensitive fibers. The fibers are compatible with standard single-mode fibers with regard to modal properties, dispersion characteristics, and transmission loss. The fibers presented exhibit no crosstalk and it is possible to use them together with other multiplexing methods like CWDM or DWDM. Dedicated fanin/ fan-outs have been created in order to make immediate use in industry possible. The hole-assisted 19-core fiber with single-mode cores is being presented for the very first time.
In this paper we present experimental results of measurements of the lens thickness carried out using all fiber low coherence interferometer. A new interferometric device for measuring the thickness of the lens using optical fibers has been developed in response to market demand. It ensures fast, non-contact and accurate measurement. This work focuses above all on the conducting tests to determine the repeatability of the measurement and to verify the ability of using this method in industrial conditions. The system uses a Mach-Zehnder interferometer in which one of the arms is the reference part and the second arm containing the test element is the measurement part. The measurement rate and the easiness of placement of the test lens in the system give the possibility to automate the measurement process. We present the measurement results, which show that the use of low-coherence interferometry allows achieving high measurement accuracy and meeting other industrial needs.
In presented work, we examined the structures of dual-core fibers paying special attention to the possibility of using them for sensing. In the hole-assisted fiber structure, the character of propagation in the cores was changed fluently, by post-processing the fiber, i.e. tapering with collapsing the holes. Fiber post-processing changed the conditions for supermodes interference and thus the different scale of power transfer between cores was observed. In the paper we investigated the influence of the taper parameters (taper waist, length and ratio) on the properties of the fiber. We have also studied the behaviour of the transmitted signal, while putting post-processed segment of fiber into different external conditions. Presented research shows a great potential of using modified hole-assisted fibers as sensing elements.
The authors designed and fabricated optical power splitters, which make an alternative solution to existing commercial products. The proposed solutions use multicore microstructured optical fiber designed for new generation telecommunication networks made in Spatial Division Multiplexing (SDM) system. The splitters presented in this paper aim to have low loss and to be compatible with existing elements of optical networks, and in the same time to eliminate disadvantages of existing splitters. Two designs presented in this paper are made in all-fiber technology in order to ensure high environmental stability. The authors present detailed description and experimental results for both optical power splitters’ designs.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.