Localized surface plasmon resonances (LSPR) occur in certain metals where electrons confined to the metal surface oscillate with similar frequency as the perturbation source, giving rise to localized electromagnetic fields. In this study we employ experimental and theoretical analyses to characterize LSPR in Alcore(Al2O3)shell nanoparticles with controlled morphologies. We perform simulations of LSPR using Boundary Element Methods, where the electron beam is passing at a 2.5 nm distance from the surface of an icosahedron-shaped Alcore(Al2O3)shell nanoparticles. The energy loss probability spectra show that for the mode located at an energy around 7 eV, the LSPR energy and intensity have lower values compared to other modes, when the impact factor is placed near a facet, edge and corner of the nanoparticle respectively. This agrees with our experiment, where we collected electron energy-loss spectroscopy-LSPR measurements near the surface of the nanoparticles using a monochromated 80 KeV electron source with 100 meV energy resolution. The experimental spectra appertaining to the edge and corner of the nanoparticle display an energy shift as a function of position of the electron beam with respect to the nanoparticle. By applying a Non-Negative Matrix Factorization algorithm, we de-coupled convoluted LSPR signals and attribute them to the geometry of the nanoparticle. This allowed us to map the coupling coefficient of the electron beam with the LSPR revealing the energy transfer path from the excitation source to the plasmonic nanoparticles. This study paves the way for a better understanding of the localization of LSPR in nanocatalysts with nano-engineered morphologies.
KEYWORDS: Near field, Plasmonics, Atomic force microscopy, Near field optics, Gold, Nanostructures, Lithium, Metamaterials, Current controlled current source
We demonstrate the ability to map photo-induced gradient forces in materials, using a setup akin to atomic force microscopy. This technique allows for the simultaneous characterization of topographical features and optical near-fields in materials, with a high spatio-temporal resolution. We show that the near-field gradient forces can be translated onto electric fields, enabling the mapping of plasmonic hot-spots in gold nanostructures, and the resolution of sub-10 nm features in photocatalytic materials. We further show that the dispersion-sensitive nature of near-field gradient forces can be used to image and distinguish atomically thin layers of 2-D materials, with high contrast.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.