We present a camera-based approach for remote acquisition of vital signs. Remote photoplethysmography (PPG) and 3-D depth analysis are used to detect heart rate and respiratory rate robustly and independently. By comparing the intensity/PPG and depth channels, a correlation can be observed between face PPG signal and physiological body movement. Pulsatile activity results in periodic head motion, which is correlated with fluctuations in face PPG intensity. Respiration data can be obtained from face PPG intensity as well as face and chest motion. This system is illumination and motion tolerant and has the benefit of redundancy with two independent image channels.
Dysfunction of the vascular endothelium has been implicated in the development of epilepsy. To better understand the relation between vascular function and seizure and provide a foundation for interpreting results from functional imaging in chronic disease models, we investigate the relationship between intracellular calcium dynamics and local cerebral blood flow and blood oxygen saturation during acute seizure-like events and pharmacological seizure rescue. To probe the relation between the aforementioned physiological markers in an acute model of epilepsy in rats, we integrated three different optical modalities together with electrophysiological recordings: Laser speckle contrast imaging (LSCI) was used to study changes in flow speeds, Intrinsic optical signal imaging (IOSI) was used to monitor changes in oxygenated, de-oxygenated, and total hemoglobin concentration, and Calcium-sensitive dye imaging was used to monitor intracellular calcium dynamics. We designed a dedicated cortical flow chamber to remove superficial blood and dye resulting from the injection procedure, which reduced spurious artifacts. The near infrared light used for IOSI and LSCI was delivered via a light pipe integrated with the flow chamber to minimize the effect of fluid surface movement on illumination stability. Calcium-sensitive dye was injected via a glass electrode used for recording the local field potential. Our system allowed us to observe and correlate increases in intracellular calcium, blood flow and blood volume during seizure-like events and provide a quantitative analysis of neurovascular coupling changes associated with seizure rescue via injection of an anti-convulsive agent.
Growing interest within the neurophysiology community in assessing healthy and pathological brain activity in animals that are awake and freely-behaving has triggered the need for optical systems that are suitable for such longitudinal studies. In this work we report label-free multi-modal imaging of cortical hemodynamics in the somatosensory cortex of awake, freely-behaving rats, using a novel head-mounted miniature optical microscope. The microscope employs vertical cavity surface emitting lasers (VCSELs) at three distinct wavelengths (680 nm, 795 nm, and 850 nm) to provide measurements of four hemodynamic markers: blood flow speeds, HbO, HbR, and total Hb concentration, across a > 2 mm field of view. Blood flow speeds are extracted using Laser Speckle Contrast Imaging (LSCI), while oxygenation measurements are performed using Intrinsic Optical Signal Imaging (IOSI). Longitudinal measurements on the same animal are made possible over the course of > 6 weeks using a chronic window that is surgically implanted into the skull. We use the device to examine changes in blood flow and blood oxygenation in superficial cortical blood vessels and tissue in response to drug-induced absence-like seizures, correlating motor behavior with changes in blood flow and blood oxygenation in the brain.
Laser Speckle Contrast Imaging (LSCI) is a flexible, non-invasive, label-free technique to measure relative blood flow speeds in-vivo. Near IR illumination allows deep tissue penetration due to low tissue absorption in that wavelength range. However, the low absorption leads to a reduced observed image contrast between tissue and blood vessels. This leads to a challenge in determining and automatically adjusting the best focus location invivo. Traditional autofocus algorithms that are based on either intensity contrast or frequency domain analysis do not work well during flow imaging with the LSCI technique, due to increased speckle and low contrast in the image. Using the LSCI-derived contrast ratio K directly, over a vessel of interest, provides a better metric for determining the location of imaging system focal plane, but the method is not robust as it is possesses low signal-to-noise ratio (SNR) within a single frame. In this work we use a different metric, kurtosis of the flow profile cross-section, to estimate the degree of misfocus (axial deviation of imaging system focal plane from the imaged blood vessel) and provide a feedback mechanism for robust autofocusing during blood flow imaging in a rats brain. We demonstrate via flow imaging simulations, imaging of flow in microfluidic capillaries, and in-vivo imaging of blood flow in brains of anaesthetized rats that this metric allows for the determination of the location of best focus and assessing the degree of misfocus.
We report on a novel miniature head-mounted imaging system for simultaneous optical recording of brain blood flow and changes in brain blood oxygenation in a rat. Measurements of blood flow speeds are accomplished using Laser Speckle Contrast Imaging (LSCI) technique, while changes in blood oxygenation are measured via Intrinsic Optical Signal Imaging (IOSI) technique. A single multi-wavelength (wavelength = 680, 795, 850 nm) package of vertical cavity surface emitting lasers (VCSELs) is used as the sole brain illumination source. VCSELs enable rapid toggling between wavelengths, and between high-coherence and low-coherence modes, necessary for LSCI and IOSI, respectively. The combination of a miniature light source and a small 10-bit CCD camera sensor lead to a sub-20 g device mass. The miniature imaging system, including the lens, camera, and illumination lasers, is packaged as a module, and is mounted on a chronic implanted observation window that is surgically placed in the skull, allowing for repeated measurements and removal of the imaging system from the rats head after the imaging session. The imaging system allows for a 2mm-diameter field of view and a resolution of 7.4 µm. It will allow neurophysiologists to correlate standard behavioural assays to neurovascular response in animal models, and thus enrich their understanding of neurovascular coupling dynamics of brain disorders and diseases such as stroke and epilepsy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.