The traditional histochemical staining of autopsy tissue samples usually suffers from staining artifacts due to autolysis caused by delayed fixation of cadaver tissues. Here, we introduce an autopsy virtual staining technique to digitally convert autofluorescence images of unlabeled autopsy tissue sections into their hematoxylin and eosin (H&E) stained counterparts through a trained neural network. This technique was demonstrated to effectively mitigate autolysis-induced artifacts inherent in histochemical staining, such as weak nuclear contrast and color fading in the cytoplasmic-extracellular matrix. As a rapid, reagent-efficient, and high-quality histological staining approach, the presented technique holds great potential for widespread application in the future.
We report label-free, in vivo virtual histology of skin using reflectance confocal microscopy (RCM). We trained a deep neural network to transform in vivo RCM images of unstained skin into virtually stained H&E-like microscopic images with nuclear contrast. This framework successfully generalized to diverse skin conditions, e.g., normal skin, basal cell carcinoma, and melanocytic nevi, as well as distinct skin layers, including the epidermis, dermal-epidermal junction, and superficial dermis layers. This label-free in vivo skin virtual histology framework can be transformative for faster and more accurate diagnosis of malignant skin neoplasms, with the potential to significantly reduce unnecessary skin biopsies.
Reflectance confocal microscopy (RCM) can provide in vivo images of the skin with cellular-level resolution; however, RCM images are grayscale, lack nuclear features and have a low correlation with histology. We present a deep learning-based virtual staining method to perform non-invasive virtual histology of the skin based on in vivo, label-free RCM images. This virtual histology framework revealed successful inference for various skin conditions, such as basal cell carcinoma, also covering distinct skin layers, including epidermis and dermal-epidermal junction. This method can pave the way for faster and more accurate diagnosis of malignant skin neoplasms while reducing unnecessary biopsies.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.