An important consideration for the laser beam propagation through a long atmospheric path is the geometry of the optical path and random variations in the refractive index due to atmospheric turbulence. Here, we consider a plane wave propagation through a 10km medium to investigate the deep turbulence effects on the beam propagation using phase screen approach. The turbulence effects are modeled by non-Kolmogorov descriptions of energy cascade theory, known as beta-model. The beta-model incorporates space-filling concepts for the turbulent eddies in the inertial ranges using fractal descriptions for the eddies. Metrics based on intensity and phase variances and number of zero intensity values are analyzed for various levels of turbulence intensity (measured by Cn2) by choosing the value of power law exponent from a range of eligible values. It is observed that metrics based on intensity variance saturate but metrics based on phase variance show potential for characterizing stronger turbulence effects.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.