Calcium Fluoride roughness evolution caused by ion beam milling has been studied in dependence on the ion milling parameters and different optically polished surfaces, respectively. For polished surfaces with high crystal damage, the roughness is dominated by the uncovering of the sub-surface damage due to the ion beam milling. For smooth surfaces with low damage the roughness is an intrinsic one and the creation of self-organized nanoscale structures can be obtained. Ion milling parameters influence more the intrinsic roughness than the extrinsic. Generally, high ion energies and sputter gases with low atom mass produce rough surfaces. Low ion energies and gases with high mass result in smooth surfaces. Ion bombardment induces a decomposition of CaF2 in the near surface layer. Surface analytical measurements show that ion sputtering to some extent decompose the CaF2 surface layer in contrast to the combined action of ion sputtering and low energy electron irradiation. The measured higher VUV absorption after ion milling is caused by the modified sub-surface layer mainly and not by the increased surface roughness.
Ion beam figuring (IBF) using inert gas (e.g. Ar) and (Reactive) ion beam etching [(R)IBE] gain growing interest in precision optical surface processing, RIBE mainly for proportional transfer of 3D-resist masks structures in hard optical materials and IBF for finishing and nanometer precision surface figuring in high performance optics technology. Ion beam and plasma jet etching techniques related to different optical surface figuring requirements have been developed at IOM during the last decade. Some of these techniques have been proven to be mature for application in industrial production. The developmental work include material related process tuning with respect to enhance the processing speed and to improve surface roughness and waviness, further various processing algorithms related to different surface figure requirements and processing related equipment modification. Plasma jet assisted chemical etching is under development with respect to efficient machining techniques for precision asphere fabrication. The paper gives an overview of precision engineering techniques for optical surface processing focusing on the status of ion beam and plasma techniques. The status of the proportional transfer of 3D micro-optical resist structures (e.g. micro-lens arrays, blazed fresnel lens structures) into hard optical and optoelectronic materials by (reactive) ion beam etching will be summarized.
Calcium Fluoride microlens arrays have been produced with the help of an ion milling transfer of photoresist lenses which have been fabricated by two different techniques (i) by a melting resist technique and (ii) gray scale lithography. Major technical problems connected with the ion milling transfer of the photoresist lenses in the CaF2 material are surface roughness enhancement and variation of the lens shape. We studied the ion-induced decomposition of CaF2 and the surface roughness equatio in dependence on different milling conditions. For the microlens patter transfer the ratio of etching rates of the photoresist and the CaF2 have been adjusted by gas admixture of nitrogen to the Ar sputtering gas. The angle dependence of the etching rates leads also to a changing of the lens profile. The effect of ion beam induced surface roughness and the accuracy of the transfer process is discussed.
Reactive ion beam etching (RIBE) has been demonstrated to be an efficient figuring process for the fabrication of optical aspheric elements with high asphericities as they are needed for high performance EUV - or x-ray optics and satellite communications optics respectively. Using specially designed broad and medium beam size ion sources a RIBE process based on fluor containing etching gases was developed resulting in high removal rates and very smooth surfaces. In two applications the RIBE figuring was applied for the fabrication of fused silica aspheric surfaces with nanometer accuracy at a figuring depth of some ten micrometers. A setup with a computer controlled two-axis shutter system for shaping of the ion beam was applied for etching of a linear parabolic aspheric surface. In a second application a medium diameter high current source with a fixed beam profile was scanned across the surface with the dwell time being proportional to the desired material removal.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.