This study aims to display the ability and efficacy of 3D printing image-based, implantable biological scaffolds with varying properties. In this study, scaffolds were printed using various ratios of hydroxyapatite (HA) to polycaprolactone (PCL) to display a spectrum of properties suitable for musculoskeletal scaffolds. As an initial application of this method, scaffolds were generated from a series of one hundred DICOM images for a 60-year-old, female proximal femur. Additional structures, including a printed box and a circular lattice were generated. These models were printed at HA to PCL ratios (m/m) of 1:9, 2:8, 3:7, 4:6, 5:5, 6:4, 7:3, 8:2, and 9:1. Postprinting analysis of the ratios was performed with scanning electron microscopy to observe the prints’ microstructure. Post printing analysis also included a compression test to observe biomechanical properties and a cell culture on the prints to observe cellular viability and adhesion. Ratios showed vast microstructural differences. It was also found that the 6:4 sample had the most similar surface level microstructure to that of human trabecular bone. The compression test revealed a positive correlation (R2 = 0.92) between HA concentration (%) and stiffness (N/mm). Cellular viability and adhesion were confirmed for 10 days after initial seeding cells.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.