We demonstrate a sum frequency generation (SFG) holographic imaging method by integrating the capabilities of holography and SFG spectroscopy. SFG can probe the molecular vibrational resonance in non-centrosymmetric media. Holographic recording can capture both the amplitude and the phase of the SFG signal, thus leading to label-free spectroscopic three-dimensional imaging.
Two-Dimensional (2D) layered materials have garnered interest due to their novel optical and electronic properties. In
this work, we investigate Second Harmonic Generation (SHG) in Tungsten Disulfide (WS2) monolayers grown on
SiO2/Si substrates and suspended on a transmission electron microscopy grid; we find an unusually large second order
susceptibility, which is nearly three orders of magnitude larger than common nonlinear crystals. We have also developed
a Green’s function based formalism to model the harmonic generation from a 2D layer .
We demonstrate a flexible thin film zero refractive index optical metamaterial with matched impedance to free space and
low absorption loss at 1.55 μm. The metallo-dielectric multilayer structure with fishnet geometry was optimized by a
genetic algorithm. The fabrication process and characterization approach are described. The experiment results agree
well with the theoretical predictions, showing an effective index of neff = 0.072 + 0.51i and an impedance of Zeff/Z0 = 1.009 – 0.021i.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.