KEYWORDS: Data modeling, Semiconducting wafers, 3D modeling, Etching, Chemical mechanical planarization, Scanning electron microscopy, Process modeling, Virtual reality, Wafer inspection, Calibration
As design rule of devices are getting smaller, it is hard to obtain enough process window like DOF, EL. In aspect of
device integration, lithography processes which are included in etching process became more and more important. It has
been claimed that photo resist profile is closely related with etch bias and vertical profile. Resist top-loss and bottom
slope seriously affect after-etching profile. In order to address these problems, new model based verification method is
necessary for preventing hot spots.
In this paper, we propose more practical method of model based verification using rigorous simulation and wafer
verification results. Highly accurate model is obtained by physical model fitting with minimal experimental data set.
After that, virtual data are extracted from rigorous simulation model for applying full chip model based verification
modeling. Basically, 2 data sets will be needed for verification of 2-level model, for detecting resist top-loss and bottom-slope.
Finally this article shows comparison results of model based verification and real wafer inspection. And also, we
try to prove that the newly proposed method is another good candidate to address existing problems such as pinching and
bridging after post etching and CMP process.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.