A method for target classification in synthetic aperture radar (SAR) images is proposed. The samples are first mapped into a high-dimensional feature space in which samples from the same class are assumed to span a linear subspace. Then, any new sample can be uniquely represented by the training samples within given constraint. The conventional methods suggest searching the sparest representations with ℓ1-norm (or ℓ0) minimization constraint. However, these methods are computationally expensive due to optimizing nondifferential objective function. To improve the performance while reducing the computational consumption, a simple yet effective classification scheme called kernel linear representation (KLR) is presented. Different from the previous works, KLR limits the feasible set of representations with a much weaker constraint, ℓ2-norm minimization. Since, KLR can be solved in closed form there is no need to perform the ℓ1-minimization, and hence the calculation burden has been lessened. Meanwhile, the classification accuracy has been improved due to the relaxation of the constraint. Extensive experiments on a real SAR dataset demonstrate that the proposed method outperforms the kernel sparse models as well as the previous works performed on SAR target recognition.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.