A new approach to vacuum packaging micromachined resonant, tunneling, and display devices will be covered in this paper. A multi-layer, thin-film getter, called a NanoGetter, which is particle free and does not increase the chip size of the microsystem has been developed and integrated into conventional wafer-to-wafer bonding processes. Experimental data taken with chip-scale packages using glass frit bonding between the Pyrex and silicon wafers, has resulted in silicon resonators in which Q values in excess of 37,000 have been obtained. Reliability data for vacuum-sealed diaphragms and resonators will be presented. Unlike previous reliability studies without getters, no degradation in Q has been noted with NanoGetter parts after extended high temperature storage. Applications for this technology include gyroscopes, accelerometers, displays, flow sensors, density meters, IR sensors, microvacuum tubes, RF-MEMS, pressure sensors and other vacuum sealed devices.
High volume silicon micromachining has been employed by the automotive industry for 20 years. This paper examines past, current and future applications of MEMS to the automobile. Both sensor and the application of micromachining to other automotive areas are covered. Technologies such as wet and plasma etching, wafer bonding, LIGA, circuit integration and packaging are discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.