Joseph Losby, Fatemeh Fani Sani, Dylan Grandmont, Zhu Diao, Miro Belov, Jacob Burgess, Shawn Compton, Wayne Hiebert, Doug Vick, Kaveh Mohammad, Elham Salimi, Gregory Bridges, Douglas Thomson, Mark Freeman
An optomechanical platform for magnetic resonance spectroscopy will be presented. The method relies on frequency mixing of orthogonal RF fields to yield a torque amplitude (arising from the transverse component of a precessing dipole moment, in analogy to magnetic resonance detection by electromagnetic induction) on a miniaturized resonant mechanical torsion sensor. In contrast to induction, the method is fully broadband and allows for simultaneous observation of the equilibrium net magnetic moment alongside the associated magnetization dynamics.
To illustrate the method, comprehensive electron spin resonance spectra of a mesoscopic, single-crystal YIG disk at room temperature will be presented, along with situations where torque spectroscopy can offer complimentary information to existing magnetic resonance detection techniques.
The authors are very grateful for support from NSERC, CRC, AITF, and NINT.
Reference: Science 350, 798 (2015).
Corrosion is a major problem for civil infrastructure and is one of the leading factors in infrastructure deterioration.
Techniques such as half-cell potential can be used to periodically monitor corrosion, but can be difficult to reliably
interpret. Wired systems have large installation cost and long-term reliability issues due to wire corrosion. In this paper
an embedded inductively coupled coil sensor able to monitor the corrosion potential of reinforcement steel in concrete is
presented. The sensor is based on a coil resonator whose resonant frequency changes due to the corrosion potential being
applied across a parallel varactor diode. The corrosion potential can be monitored externally using an inductively
coupled coil. An accelerated corrosion test shows that it can measure corrosion potentials with a resolution of less than
10 mV. This sensor will detect corrosion at the initiation stage before observable corrosion has taken place. The wireless
sensor is passive and simple in design, making it an inexpensive, battery less option for long-term monitoring of the
corrosion potential of reinforcing steel.
A passive wireless displacement sensor suitable for use in civil structural health monitoring applications is presented.
The sensor is based on a resonant electromagnetic cavity with one end of the cavity formed by a flexible membrane. A
rod attached to the membrane causes the dimensions of the cavity to change when the rod is displaced. The change in
dimensions causes a shift the resonant frequency of the cavity that is directly related to the displacement of the rod. In
the example shown the shift is 7 MHz per mm for a cavity with a resonant frequency of 2450 MHz. Using a pulse echo
interrogation technique resonant shifts of 100 kHz are resolvable. In the laboratory, displacements of 0.014 mm were
measurable, with the distance between the interrogator and the sensor of up to 4.5 m.
Fiber Bragg gratings (FBG) are one of several fiber optic sensor technologies currently being used in structural
health monitoring systems. When the effective refractive index of a fiber Bragg grating is changed by external
environmental variations (e.g. temperature, pH), the wavelength at which incident light experiences a maximum
reflection from the grating will correspondingly shift. To detect small environmental variations that occur during certain
chemical processes, one can enhance the sensitivity using either side-polished or tilted fiber Bragg gratings. Enhanced
sensitivity in each case is achieved by polishing the fiber on one side or writing the grating at some tilt angle. Side
polished FBG sensors having a 1542 nm Bragg wavelength and cladding thickness values from 1-3 &mgr;m provide a
maximum refractive index sensitivity of 7×10-4. Tilted FBG sensors having a 1566 nm Bragg wavelength and written
with a 4° degree tilt angle provide a maximum refractive index sensitivity of 5×10-5. Experiments on the tilted gratings
were done using 50, 80, 125 &mgr;m diameter fibers immersed in solutions in the index range 1.31-1.44. Since tilted FBGs
have enhanced sensitivity and the advantage of maintaining their full mechanical strength, they show greater promise as
reliable sensors for structural health monitoring applications.
Fiber Bragg grating sensing is a relatively mature fiber optic sensor technology currently being used in structural health monitoring systems. Therefore, there are significant benefits to using this technology as a platform for other sensing modalities. In this work, a side polished fiber Bragg sensor is described for sensing refractive index changes. The effective refractive index of a fiber Bragg grating is a function of the refractive index of the media surrounding it, and its sensitivity may be optimized with appropriate design. As the external refractive index changes, the wavelength at which incident light experiences a maximum reflection from the grating will shift. The sensitivity of a fiber Bragg grating to external refractive index changes increases when the grating is polished on one side. This side-polishing technique enables the Bragg grating to preserve a greater portion of its mechanical strength compared with other techniques such as chemical etching. This work utilizes side-polished fiber Bragg grating sensors centered at a 1542.9 nm wavelength with cladding thickness values of approximately 1-2 μm. The response of these sensors to small refractive index changes was studied. Previous work on fiber Bragg grating sensors has shown that the peak wavelengths can be measured with 3 pm repeatability. With this repeatability, this study demonstrated that a 0.001 refractive index change can be observed. By using materials that change index with moisture or pH, this technique can be used to construct both pH and moisture sensors.
One of the key elements in a structural health monitoring system is the sensing element and data acquisition system. One type of fiber optic sensor used to measure strain is the fiber Bragg grating. Bragg gratings are fabricated using different methods. One method involves placing a mask pattern over the optical fiber and projecting UV light through it to change the refractive index of the core. However, before the grating is written into the core of the fibre, the outer fibre coatings must be stripped away either mechanically or chemically. Fibre Bragg gratings are then recoated after the grating has been written to maintain the strength and flexibility of the fibre by protecting the exposed glass from damage. Acrylate and polyimide are two types of recoat material typically used on fibre Bragg grating sensors. This work is a controlled comparison of polyimide and acrylate recoated fibres for Bragg grating strain sensors. The comparison was carried out using a tension test coupon with recoated FBG and electrical strain gauges bonded to its surface. The tension test specimen was made of cold rolled steel and was designed according to ASTM A30-97a standard. The dimensions were chosen such that three fibre optic sensors and a strain gauge can be attached on each side. The load was applied in 40 με steps until the strain reached approximately 200 µε. The load was then incrementally decreased back to zero. FBG sensors from 2 manufacturers were compared. For the first manufacturer the Acrylate coated sensors required a gauge factor is 0.75 in order for electrical and FBG strain readings to agree. For Polyimide coated sensors, the appropriate gauge factor was very close to the theoretically predicted value of 0.8. Using these gauge factors, the error between the first manufacturers sensor readings and the strain gauges was well within ±5µε. On the other hand, the second manufacturers sensors did not perform nearly as well. Their readings were substantially lower than the corresponding electrical strain gauges readings and varied from 7% to 13% below expected strain readings. This study demonstrates that bonded FBG sensors can reliably measure strain, but that not all manufacturers are producing recoated FBG sensors to the standard required for strain sensing in civil structures.
In this paper we will be describing noise reduction techniques for new type of wireless sensor for use in monitoring strain in civil structures. This strain sensor is a passive sensor that can be embedded and then interrogated through an attached antenna and hence has the advantage that is requires no permanent electrical or optical connection. The sensor is a metal coaxial cylindrical cavity embedded or attached to the object in which strain is to be measured. As the structure changes dimension in response to applied forces the electromagnetic cavity also changes dimension and hence its resonant frequency also changes. The sensor can then be interrogated via the antenna and the resonant frequency of the electromagnetic cavity determined. Once the resonance frequency is determined it can be used to calculate the strain in the structure. We will present results on the use of time domain gating to reduce environmental and instrumental noise. We will also present results using peak fitting techniques that make optimum use of signals to locate the resonance. These noise reduction techniques make the use of this type of sensor applicable in a wider range of environments. We have demonstrated a strain resolution of 8 microstrain in a noisy environment by using peak fitting techniques. These techniques were much less sensitive to environmental sources of noise than FM modulation and phase sensitive detection.
Fiber Bragg grating sensors are one of many fiber optic sensor technologies that are currently being used in structural health monitoring systems. The sensors operate by detecting shif in the wavelength of relfected maxima due to applied strain. This paper studies a new fiber Bragg interrogation method that utilizes a swept wavelength laser in combination with wavelength references. These include a gas cell, which is used as the long term wavelength standard and an etalon used for accurate interpolation of peak wavelengths. An etalon is essentially a filter that has a periodic response over a broad wavelength range. Since its wavelength response spacing is smaller than the gas cell, it can be used to determine the intermediate wavelengths between two gas cell absorption lines. Peak location is a key element of this interogation method and several detection algorithms are investigated. It was determined that polynomial peak fitting is the most computationally efficient method and yields a resolution of better than 0.5 pm with signal to noise ratios of 30:1 or better. With higher signal to noise ratios, polynomial peak fitting can yield a resolution of better than 0.25 pm and a resolution of bettern than 0.25 pm. Using a tunable laser, a HCN gas cell and an etalon with maxima every 140 pm, static load tests will demonstrate that a resolution of 1 pm and an accuracy of less than 5pm can be achieved. Also, this accuracy will be maintained over a long period of time as it is based on absorption lines in the gas cell. The results of this study demonstrate that absolute accurate strain measurements can be obtained with the use of wavelength references in conjunction with a suitable peak location algorithm.
In this paper we describe a new type of strain sensor which can be embedded in civil structures for structural health monitoring applications. This strain sensor is a passive device that can be embedded in a structure and remotely interrogated using RF signals via an attached antenna. Such a sensor has the advantage of requiring no permanent physical connection between the sensor and the data acquisition system. The sensor is a metal coaxial cavity that can be embedded or bonded to the structure in which strain is to be measured. The design presented here exhibits a dominant mode of electromagnetic resonance for wavelengths two times its cavity length. When the material in which the sensor is embedded is strained, the strain will be reflected in changes in the sensor dimensions, and hence will cause a shift in the resonant frequency of the cavity. The resonant frequency, or shift therein, can be easily obtained by various methods. The acquired resonant frequency is then used to calculate the strain on the structure. The sensor presented in this paper operates at a frequency of approximately 2.4 GHz, and exhibits a shift in resonance of 2.4 kHz per microstrain. The sensor has been embedded in concrete test cylinders and interrogated using external antenna. Experimental results show a strain resolution of better than 1 microstrain with a bandwidth of 30 Hz on this sensor. We will also present results of different interrogation systems including a simple switched detector circuit, a gated detector circuit and also using lock in techniques. This new class of embeddable sensor will have application in monitoring the health of and assessing damage in civil structures.
As the design and construction of civil structures continue to evolve, it is becoming imperative that these structures be monitored for their health. In order to meet this need, the discipline of Civionics has emerged. It involves the applications to civil structures and aims to assist engineers in realizing the full benefits of structural health monitoring (SHM). Therefore, the goal of the specification outlined in this work is to ensure that correct installation and operating of fiber optic sensors, such as bridges, will be discussed that motivated the writing of these specifications. The main reason for the failure of FOS based monitoring systems can be traced directly to the installation of the fiber sensor itself. Therefore, by creating a standard procedure for SHM, several ambiguities are eliminated such as fiber sensor specifications and the types of cables required. As a result, these specifications will help ensure that the sensors will survive the installation process and eventually prove their value over years of monitoring the health of the structure. The Civionics FOS specifications include the requirements for fiber sensors, specifically Bragg grating sensors, and their corresponding readout unit. It also includes specifications on the cables, conduits, junction boxes, cable termination and the environmental.
Electric fields in dielectric materials produce dipoles related to the polarizability of the material. In this paper we will present a technique that measures the polarization near a surface. The polarization is induced by a modulated signal applied to the conducting probe used for detection. The polarization dipoles in the surface layers of the material generate an electrostatic attraction between the between the probe and the dielectric material. Using techniques common in non-contact force microscopy these forces can easily be sensed. Remarkably, this measurement technique can be extended to frequencies well above the mechanical resonant frequency of the probe cantilever by utilizing amplitude modulation heterodyning. By rastering the probe over the surface an image of the dielectric properties of the surface can be produced. We expect this technique to be useable up to frequencies of at least 20 GHz and time resolution of less than 100 ps. We present calculations of the forces generated assuming simple probe geometries and also thermal noise that compare favourably with experimental results. The technique has been used in the stroboscopic imaging of an operating 434 MHz surface acoustic wave device. The experiments already completed demonstrate that this technique may be employed to produce images that display the local polarizability of materials at a given frequency. In more detailed studies, regions of interest can be imaged repeatedly, with different frequencies used to produce each image.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.