Digital focusing schlieren relies on accurate mapping between a camera and a digital modulator or display system. Our early development of the technology was challenged by higher-order distortions in the optical systems. A simple perspective transform was adequate for lower-power lenses and smaller fields of view, but for wide fields and for highly sensitive configurations such as dark-field schlieren, correction terms were necessary. The Brown-Conrady model fitting implemented by OpenCV offered little improvement, so we developed a new distortion correction method that empirically optimizes the schlieren filter performance and constructs a map with phase unwrapping techniques borrowed from interferometry. This approach allows operation even with wider-angle lenses and finally makes dark-field schlieren practical. It also appears to improve the resilience of the grid generation with lower resolution camera systems, which is important for implementation in high speed schlieren imaging.
Schlieren imaging has been an essential method for studying aerodynamic effects, particularly thermal convection, shock waves, and turbulent flows. This paper describes a compact portable digital focusing schlieren system that can be used to visualize relatively large fields for applications in ventilation design and aerodynamics research. Visualizing large fields is difficult using classical schlieren systems that employ collimated light because their field of view is limited by the size of the mirrors or lenses. Background-oriented schlieren systems are well-suited for visualizing large fields, but their sensitivity is limited by the need to simultaneously maintain focus on the background pattern and the test area. Lens and grid-based focusing schlieren systems are essentially hybrids between classical and background-oriented systems. They can visualize fields that are much larger than possible with classical schlieren systems, while providing more sensitivity than background-oriented schlieren systems. Using commercially available camera lenses and optics, fields up to several square meters can be visualized. A key innovation in the system presented here is that digital display devices are used to display the background pattern, which simplifies the optical system and reduces its size. To calibrate the system, proprietary software is used to analyze images acquired by the system’s digital camera, and then a background pattern is computed that is complementary to the cutoff grid. The calibration software also provides real-time background subtraction and contrast enhancement. The schlieren system is portable enough that it can be set up quickly in industrial facilities.
Modern digital recording and processing techniques combined with new lighting methods and relatively old schlieren visualization methods move flow visualization to a new level, enabling a wide range of new applications and a possible revolution in the visualization of very large flow fields. This paper traces the evolution of schlieren imaging from Robert Hooke, who, in 1665, employed candles and lenses, to modern digital background oriented schlieren (BOS) systems, wherein image processing by computer replaces pure optical image processing. New possibilities and potential applications that could benefit from such a capability are examined. Example applications include viewing the flow field around full sized aircraft, large equipment and vehicles, monitoring explosions on bomb ranges, cooling systems, large structures and even buildings. Objectives of studies include aerodynamics, aero optics, heat transfer, and aero thermal measurements. Relevant digital cameras, light sources, and implementation methods are discussed.
Since its invention in the 19th century, schlieren imaging has been an essential method for studying many aerodynamic effects, particularly convection and shock waves, but the classical method using parabolic mirrors is extremely difficult to set up and very expensive for large fields of view. Focusing schlieren methods have made large- area schlieren more feasible but have tended to be difficult to align and set up, limiting their utility in many applications We recently developed an alternative approach which utilizes recent advances in digital display technology to produce simpler schlieren system that yields similar sensitivity with greater flexibility.
A high-speed digital streak camera designed for simultaneous high-resolution color photography and focusing schlieren imaging is described. The camera uses a computer-controlled galvanometer scanner to achieve synchroballistic imaging through a narrow slit. Full color 20 megapixel images of a rocket sled moving at 480 m/s and of projectiles fired at around 400 m/s were captured, with high-resolution schlieren imaging in the latter cases, using conventional photographic flash illumination. The streak camera can achieve a line rate for streak imaging of up to 2.4 million lines/s .
Several experiments have demonstrated the potential of Laser Doppler Vibrometry, in conjunction with acoustic-toseismic coupling or mechanical shakers, for the detection of buried landmines. For example, experiments conducted by The University Of Mississippi and MetroLaser, Inc. have shown the ability to scan a one square meter area in less than 20 seconds with a 16-beam multi-beam LDV (MB-LDV), and find the landmines under a variety of soil conditions. Some critical requirements for this technology are to reduce the measurement time, increase the spatial resolution, and reduce the size of the systems. In this paper, MetroLaser presents data from three optical systems that help achieve these requirements: 1) A Compact MB-LDV, 2) A two dimensional, or Matrix Laser Doppler Vibrometer (MX-LDV), and 3) A Whole-field Digital Vibrometer (WDV). The compact MB-LDV produces a 1-D array of beams, which may be scanned over the target surface with a scanning mirror. The size of the new, compact MB-LDV system has been reduced to approximately 17" x 11" x 9", thus enhancing its capability for field applications. The MX-LDV, to be developed in 2006, produces a 16x16 array of beams over a one meter area, allowing the ground velocity of the entire area to be measured in a single measurement. The WDV uses a camera-based interferometry system to take a snapshot of the ground vibration over a one meter square area with very high spatial resolution. Field tests for this system are scheduled for mid-2006.
Bacteriorhodopsin (bR) is a small protein containing the chromophore retinal, and resides in the membrane of the Halobacterium salinarium. When the retinal absorbs a photon, a cycle of structural changes is triggered resulting in a cross-membrane proton transfer, which is used to generate energy for the organism. Many studies have been conducted to elucidate the dynamical structure - optical property relations, and the overall mechanism of photo-induced proton transport in bR is now well understood. On the other hand, site selective mutagenesis allows engineering of the original ("wild-type") bR, such that the protein can be made sensitive to specific chemicals or biological structures that consequently induce changes in the proton-transport. As such, bR provides a unique molecular platform onto which various functional elements can be built: peptide receptors for molecular recognition of pathogens (e.g. viruses, cancer cells, spores, bacteria, bio-toxins), fluorescent tags (using the inherent optical transduction mechanism of bR), and chemical anchors for capturing target cells. In particular, the stability of bR in extreme environments (pH range of 1 - 11, temperatures up to 110 °C) allows for optical detection under a large range of environmental conditions. In this paper we present and discuss experimental data of several bR mutants and their potential as chemical and biological sensors. In particular, the optical changes associated with metal ligand binding are discussed for two mutants, 170C and 169C/96N, as well as the optical changes associated with streptavidin-coated beads bound to bR with strep II tags inserted in the E/F loop.
We present the first time resolved photon echo measurements of homogeneous dephasing of organic dopants in an inorganic sol-gel glass and compare these results with recent hole- burning experiments. In addition, energy transfer mechanisms and chromophore spatial distributions are investigated by time-resolved fluorescence anisotropy measurements.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.