In a complementary FET (CFET), n- and p-type transistors are stacked on top of each other to enable device scaling. This stacking approach requires very high aspect ratio vertical feature pattering, namely, active gate, spacer source/drain cavity and contact patterning. We report contact trench patterning and plasma etch process development for contacting bottom and top transistors relevant to middle-of-line (MOL) integration in monolithic nanosheet based CFET. First, deep trenches (M0) with aspect ratio (AR) ~13 to 15 are etched into SiO2 dielectric layer between tall gates for routing bottom device. After the formation of bottom device, MOL contact patterning (M0T, AR ~8 to 9) for top device is performed. The main etch challenges are to preserve gate and gate spacer (SiN) and achieve good depth uniformity, especially when the M0 trench CD is reduced at tight pitches. At pitch 50nm, M0 etch development results are shown for four different etch processes (named as Etch Recipe 1 to 4) in which M0 etch depth is increased gradually targeting minimal SiN loss. To reduce gate spacer (SiN) loss, fluorocarbon plasma passivation and hydrocarbon polymer deposition step is used during M0 trench patterning.
In this paper, middle-of-line (MOL) plasma etch development results for the monolithic CFET integration with nanosheet devices using scaling-relevant test vehicle (CPP48nm) are presented. Several critical MOL patterning steps are addressed, with the focus on the patterning of the trenches (M0) for contacting to the bottom and top devices. The patterning of M0A consists of SiO2 dielectric and thin SiN liner etch landing on epitaxial source drain (S/D). The critical M0 etch requirement is preserving the SiN gate spacer to avoid shorting between S/D and gate. Due to no-gate plug implementation in the process flow, the etch development must rely on very challenging, patterning the small critical dimension (CD) contacts to create enough dielectric barrier between the metal contact and the gate, and preferably, also very challenging, self-alignment to the thin gate spacer. The dependance of the M0 CD and the etch depth is accessed by using the range of the EUV lithography conditions and evaluating the maximum etch depth of the trench as a function of the printed CD. The minimum trench CD achieved on the bottom of the trench is ~ 13nm, and the minimum top CD in the range of ~ 16nm, with the evident etch non-uniformity observed in the etch depth. The trend of larger contact CD resulting in the deeper etch and process uniformity improvement is observed. Etch depth larger than 100nm is achieved when top M0 CD is >20nm. The option with the SiN liner deposition followed by SiN liner etch (spacer formation) post- M0 SiO2 is developed. This patterning sequence consists of SiO2 etch stopping on the thin SiN (over S/D) followed by additional SiN deposition and finally etching of the deposited SiN liner as well as SiN liner covering S/D. The option with SiN spacer formation minimizes the risk of short to the gate, due to extra SiN dielectric film protecting the gate. In addition, we present the results for another critical MOL patterning step, i.e., HAR metal recess post M0 metallization (AR~11)
Buried power rail (BPR), a novel integration approach for further device scaling, brings in new patterning needs and requirements, the most importantly, the challenging middle-of-line (MOL) patterning process steps. In this paper, some of the critical plasma dry etch development processing results for the FinFET device flow with BPR integrated are presented. Mainly, the study was focused on plasma dry etch development of high aspect ratio Via contact to BPR metal (VBPR) and Trench contact etch (M0A) to the source/drain (S/D) device region. We demonstrate the short-free M0A (no attack on the neighboring gates) contact etch to the S/D, with the high etch selectivity values obtained in case of the dielectric SiO2 trench etch to the thin Si3N4 liner (deposited over epitaxial S/D), and subsequently the high selectivity values during SiN liner etch to the underlying S/D (SiN liner etch results in 0nm epitaxial film loss). Patterning of high aspect ratio (HAR) Via consisting of the multi-stack, SiO2/SiN/SiO2/SiN dielectric, landing on the bottom BPR metal was achieved, with the target critical dimension (CD) required to avoid shorting to the adjacent gates. Additionally, we report our learnings on how choice of buried power metal (W, Ru and Mo) impacts the etch requirements, i.e., the etch challenges associated by using Ru and Mo as a replacement for standardly used W metal.
As conventional pitch scaling is saturating, scaling boosters such as buried power rail (BPR) [1-4] and its extension to backside power delivery (BSPDN) [5, 6] could provide 20% and 30% area gain [7], respectively. BPR can also help to improve SRAM design [8] and is a building block in novel architectures such as CFET [9, 10], for technology scaling beyond the 3 nm CMOS node. The two main features of BPR technology include: (i) the introduction of BPR metal within the fin module (fig. 1). Metal insertion in front-end-ofline (FEOL) has a risk of tool/wafer cross-contamination. Ensuring that BPR metal is fully encapsulated during contamination critical processes such as epitaxy, is therefore, essential. A proper choice of metal limits the risk of device performance/reliability degradation from metal diffusion & mechanical stress. (ii) The addition of VBPR via connections from M0A contact level to the BPR lines. Its challenges include high aspect ratio (AR) patterning, achieving low resistance (R) and reliable contact with BPR. This paper reports an overview of BPR/Via-to-BPR (VBPR) module development and metallization options at BPR and VBPR.
Self-Aligned Gate Contact (SAGC) integration is design based on formation of the two separate contacts to the source/drain (S/D) and to the gate (G), which are realized in two separate plasma etch steps. Essentially, the first one is the contact plug (CP) etch over S/D contact selective to the gate plug (GP) and sidewall spacer (SWS), and the second one is the gate plug (GP) etch selective to the contact plug (CP) and the sidewall spacer (SWS). Therefore, the high selectivity plasma etch processing for the CP and GP towards the other two relevant, neighboring films is a key requirement for successful SAGC integration. In this paper we present plasma etch process development required for SAGC implementation, primarily focusing on the multi-color selectivity studies, i.e., selective CP (towards GP and SWS) as well as selective GP (towards CP and SWS) at contacted poly pitch (CPP) 42nm. The primary (‘standard’) integration scheme uses SiO2 CP, Si3N4 GP and SiCO SWS. Furthermore, we investigate the “alternative’ integration scheme with SiCxNy films as replacement of the traditionally used SiO2 CP material aiming to simplify the patterning sequence and ease high selectivity requirements. We report the selectivity values obtained on the CP/GP/SWS multi-color stack for the CP plasma processing (SiO2 or SiCxNy) towards Si3N4 and SiCO; as well as for GP (Si3N4) plasma dry etch process towards SiO2 or SiCxNy and SiCO. Using a Quasi-ALE (Q-ALE) approach for selective SiO2 etch process is developed with a selectivity of 8 to 1 towards Si3N4 and SiCO. For the selective Si3N4 etch continuous wave plasma CH3F-based process is developed and selectivity of 9 to 1 towards SiO2 and SiCO achieved. In the case of the integration scheme with SiCxNy CP, the selectivity for SiCxNy etch towards Si3N4 GP and SiCO SWS higher than 20 to 1 is accomplished using continuous RF source NF3/O2- based process. As for the Si3N4 plasma etch in the ‘alternative’ scheme using CH3F/O2-based process, the selectivity towards SiCxNy of higher than 20 to 1 and selectivity to SiCO of around 10 to 1 is achieved.
MTJ stack is optimized for TMR at low RA region, high PMA and 400oC post annealing
capability. Atomic level smooth bottom electrode with 0.5A roughness was developed and positive effects on
annealing capability and PMA was demonstrated. The scaling challenge of STT-MRAM read operation down
to sub-10nm is discussed. Various contributing factors to the MTJ cell resistance variation were investigated
with focus on MRAM cell variation due to advanced lithography patterning techniques. With SADP or DSA,
the MRAM cell size can be scaled down to 18nm physical dimension with 4.2% σ/μ cell area variation, good
enough for sub-10nm technology node.
In this paper we report on the patterning challenges for the integration of Spin-Transfer Torque Magneto-Resistive- Random-Access Memory (STT MRAM). An overview of the different patterning approaches that have been evaluated in the past decade is presented. Plasma based etching, wet echting, but also none subtractive pattering approaches are covered. The paper also reports on the patterning strategies, currently under investigation at imec.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.