Intracellular Optical Oxygen sensing is a convenient approach for monitoring and imaging molecular oxygen (O2) in biological samples, however existing intracellular O2-sensing probes still have some limitations. This study describes one new phosphorescent hetero-substituted derivative of Pt(II)-tetrakis(pentafluorophenyl)porphyrin (PtPFPP) obtained via two-step thiol click-chemistry. Particularly, thio-glucose (Glc) and thio-methyl-polyethylene-glycol (mPEG) moieties were covalently attached to the phosphorescent dye, producing the trans-di-glucosylated-di-PEGylated derivative PtGlc2PEG2 (trans). In a previous publication, we demonstrated the ability of these short PEG oligomers to drastically reduce the ability of the tetra- or tri-PEGylated conjugates to translocate across the cellular membrane. However, in this study, we show the capability of the trans-di-PEGylated-di-glucosylated conformation to allow intracellular staining and O2 sensing (IcO2) in murine embryonic fibroblasts (MEFs) mammalian cells.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.