Nowadays, there is an increasing concern about the use of less harmful techniques to the environment, and about road safety in Transportation Engineering. Heterogeneous photocatalysis based on the application of semiconductors materials onto asphalt mixtures is a promising technology because it can mitigate air pollution and road accidents. The functionalized asphalt mixtures with photocatalytic capability can degrade pollutants, such as damaging gases and oil/greases over their surface from specific reactions triggered by sunlight photons, providing significant environmental and social benefits. In this communication, a brief review of photocatalysis applied in asphalt mixtures will be presented.
Microtopographic and rugometric characterization of surfaces is routinely and effectively performed non-invasively by a number of different optical methods. Rough surfaces are also inspected using optical profilometers and microtopographer. The characterization of road asphalt pavement surfaces produced in different ways and compositions is fundamental for economical and safety reasons. Having complex structures, including topographically with different ranges of form error and roughness, the inspection of asphalt pavement surfaces is difficult to perform non-invasively. In this communication we will report on the optical non-contact rugometric characterization of the surface of different types of road pavements performed at the Microtopography Laboratory of the Physics Department of the University of Minho.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.