A low-power three-degree-of-freedom scanning micromirror is presented. The 2- × 2-mm mirror is a gimbaless structure, directly supported by single-crystal microsprings. It is actuated by Lorentz force and is able to tilt about two axes and has linear motion in a third-axis. The transient and frequency responses of the micromirror are analyzed. The Lagrange’s equations of motions describing the dynamic behavior of the system are presented and show a good agreement with the experimental results. The fabricated microelectromechanical system mirror demonstrates a tilt angle of 22.8 deg at 247.5 Hz about y-axis, and 13.3 deg at 292.7 Hz about x-axis, in a 0.1 T magnetic field and 20-mA current on the mirror. Power consumption is 2.6 mW of power in tilting motions in resonant operation. With a total DC-drive current of 110 mA, 232-μm linear motion is achieved.
The variation of oxygen concentration in the Indium Tin Oxide (ITO) structure highly impacts its electrical and optical characteristics. In this work, we investigated the effect of oxygen partial flow (O2/O2+Ar) and deposition pressure (p) on the refractive index (n) of reactive sputtered ITO thin films. A statistical study with a Genetic Algorithm (GA) optimization was implemented to find optimal deposition conditions for obtaining particular refractive indices. Several samples of ITO thin films with refractive indices ranging from 1.69 - 2.1 were deposited by DC sputtering technique at various oxygen concentrations and deposition pressures, in order to develop the statistical database. A linear polynomial surface was locally fitted to the data of O2/O2+Ar, p, and n of deposited films. This surface was then used as the fitness function of the GA. By defining the desired n as the objective value of the GA, the optimized deposition conditions can be found. Two cases were experimentally demonstrated, with the GA determining the needed process parameters to deposit ITO with n=2.2 and n=1.6. Measured results were very close to desired values, with n=2.25 and n=1.62, demonstrating the effectiveness of this method for predicting needed reactive sputtering conditions to enable arbitrary refractive indices.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.