In this study, the implementation and performance of bipennate topology fluidic artificial muscle (FAM) bundles operating under varying boundary conditions is investigated and quantified experimentally. Soft actuators are of great interest to design engineers due to their inherent flexibility and potential to improve safety in human robot interactions. McKibben fluidic artificial muscles are soft actuators which exhibit high force to weight ratios and dynamically replicate natural muscle movement. These features, in addition to their low fabrication cost, set McKibben FAMs apart as attractive components for an actuation system. Previous studies have shown that there are significant advantages in force and contraction outputs when using bipennate topology FAM bundles as compared to the conventional parallel topology1 . In this study, we will experimentally explore the effects of two possible boundary conditions imposed on FAMs within a bipennate topology. One boundary condition is to pin the muscle fiber ends with fixed pin spacings while the other is biologically inspired and constrains the muscle fibers to remain in contact. This paper will outline design considerations for building a test platform for bipennate fluidic artificial muscle bundles with varying boundary conditions and present experimental results quantifying muscle displacement and force output. These metrics are used to analyze the tradespace between the two boundary conditions and the effect of varying pennation angles.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.