This will count as one of your downloads.
You will have access to both the presentation and article (if available).
The proposed method which combined the experiment using the bulk tissue with ray tracing calculation were performed. In this method, a 200 μmΦ high-NA silica fiber installed in a 21G needle was punctured up to the bottom of the myocardial bulk tissue over 3 cm in thickness to measure light intensity changing the fiber-tip depth and FOV. We found that the measured attenuation coefficients decreased as the FOV increased. The ray trace calculation represented the same FOV dependence in above mentioned experimental result. We think our particular fiber punctured measurement using bulk tissue varying FOV with Inverse Monte-Carlo method might be useful to obtain the optical coefficients to avoid sample preparation instabilities.
Methods: The NPe6 fluorescence measurements using a constructed fluorescence sensing system at the inside of the arm were acquired prior to and 5 and 10 minutes after NPe6 administration as well as at the time of PDT (4-5 hours after administration), at discharge (2 or 3 days after PDT), and at 1 or 2 weeks after PDT. Participants were interviewed as to whether they had any complications at 2 weeks after PDT.
Results: Nine male patients and one female patient entered this study. All of the measurements of NPe6 fluorescence in the skin could be obtained without any complications. The spectral peak was detected at the time of discharge (2-3 days after administration) in most cases and it decreased at 1 or 2 weeks after PDT.
Conclusions: The fluorescence of NPe6 in the skin could be detected feasibly using the fluorescence sensing system in human patients. Measuring fluorescence intensity in the skin might be useful to predict the incidence of skin photosensitivity after PDT.
View contact details
No SPIE Account? Create one