GAGG:Ce (Cerium-doped Gadolinium Aluminium Gallium Garnet) is a promising new scintillator crystal. A wide array of interesting features, such as high light output, fast decay times, almost non-existent intrinsic background and robustness, make GAGG:Ce an interesting candidate as a component of new space-based gamma-ray detectors. As a consequence of its novelty, literature on GAGG:Ce is still lacking on points crucial to its applicability in space missions. In particular, GAGG:Ce is characterized by unusually high and long-lasting delayed luminescence. This afterglow emission can be stimulated by the interactions between the scintillator and the particles of the near-Earth radiation environment. By contributing to the noise, it will impact the detector performance to some degree. In this manuscript we summarize the results of an irradiation campaign of GAGG:Ce crystals with protons, conducted in the framework of the HERMES-TP/SP (High Energy Rapid Modular Ensemble of Satellites - Technological and Scientific Pathfinder) mission. A GAGG:Ce sample was irradiated with 70 MeV protons, at doses equivalent to those expected in equatorial and sun-synchronous LowEarth orbits over orbital periods spanning 6 months to 10 years, time lapses representative of satellite lifetimes. We introduce a new model of GAGG:Ce afterglow emission able to fully capture our observations. Results are applied to the HERMES-TP/SP scenario, aiming at an upper-bound estimate of the detector performance degradation due to the afterglow emission expected from the interaction between the scintillator and the nearEarth radiation environment.
METIS is the Multi Element Telescope for Imaging and Spectroscopy for the ESA Solar Orbiter. Its target is the solar corona from a near-Sun orbit in two different spectral bands: the HI UV narrow band at 121.6 nm, and the VL visible light band. METIS adopts a novel inverted externally occulted configuration, where the disk light is shielded by an annular occulter, and an annular aspherical mirror M1 collects the signal coming from the corona. After M1 the coronal light passes through an internal occulter and is then reflected by a second annular mirror M2 toward a narrow filter for the 121.6 nm HI line selection. The visible light reflected by the filter is used to feed a visible light (580 − 640 nm) polarimetric channel. The photospheric light passing through the entrance aperture is back-rejected by a spherical rejection mirror.
Since the coronal light is enormously fainter than the photospheric one, a very tough suppression is needed for the internal stray light, in particular the requirement for the stray light suppression is more stringent in the VL than in the UV, because the emission of the corona with respect to the disk emission is different in the two cases, and the requirements are a suppression of at least 10-9 times for the VL and a suppression of at least 10-7 times for the UV channel.
This paper presents the stray light analysis for this new coronographic configuration.
The complexity of the optomechanical design of METIS, combined with the faintness of the coronal light with respect to the solar disk noise, make a standard ray tracing approach not feasible because it is not sufficient to stop at the first generation of scattered rays in order to check the requirements. Also scattered rays down to the fourth generation must be treated as sources of new scattering light, to analyze the required level of accuracy. If used in a standard ray tracing scattering analysis, this approach is absolutely beyond the computational capabilities today available; therefore we opted for a scattering ray generation with a Montecarlo method in which after a father ray hits a surface, only one ray is generated, randomly selected according to the distribution of the transmitted energy. These rays bring with them all the energy that is otherwise distributed between all the rays of second generation, making the model more realistic and avoiding loss of energy due to the rays sampling. The stray light has been studied in function of the mechanical roughness of the surfaces and the obtained results indicate an instrument stray light blocking performance well within the requirements in both channels.
In the last years we have operated two very similar ultrafast photon counting photometers (Iqueye and Aqueye+) on different telescopes. The absolute time accuracy in time tagging the detected photon with these instruments is of the order of 500 ps for hours of observation, allowing us to obtain, for example, the most accurate ever light curve in visible light of the optical pulsars. Recently we adapted the two photometers for working together on two telescopes at Asiago (Italy), for realizing an Hanbury-Brown and Twiss Intensity Interferometry like experiment with two 3.9 km distant telescopes. In this paper we report about the status of the activity and on the very preliminary results of our first attempt to measure the photon intensity correlation.
Since a number of years our group is engaged in the design, construction and operation of instruments with very high time resolution in the optical band for applications to Quantum Astronomy and more conventional Astrophysics. Two instruments were built to perform photon counting with sub-nanosecond temporal accuracy. The first of the two, Aqueye+, is regularly mounted at the 1.8 m Copernicus telescope in Asiago, while the second one, Iqueye, was mounted at the ESO New Technology Telescope in Chile, and at the William Herschel Telescope and Telescopio Nazionale Galileo on the Roque (La Palma, Canary Islands). Both instruments deliver extraordinarily accurate results in optical pulsar timing. Recently, Iqueye was moved to Asiago to be mounted at the 1.2 m Galileo telescope to attempt, for the first time ever, experiments of optical intensity interferometry (à la Hanbury Brown and Twiss) on a baseline of a few kilometers, together with the Copernicus telescope. This application was one of the original goals for the development of our instrumentation. To carry out these measurements, we are experimenting a new way of coupling the instruments to the telescopes, by means of moderate-aperture, low-optical-attenuation multi-mode optical fibers with a double-clad design. Fibers are housed in dedicated optical interfaces attached to the focus of another instrument of the 1.8 m telescope (Aqueye+) or to the Nasmyth focus of the 1.2 m telescope (Iqueye). This soft-mount solution has the advantage to facilitate the mounting of the photon counters, to keep them under controlled temperature and humidity conditions (reducing potential systematics related to varying ambient conditions), and to mitigate scheduling requirements. Here we will describe the first successful implementation of the Asiago intensity interferometer and future plans for improving it.
The METIS coronagraph on board the Solar Orbiter mission will have the unique opportunity of observing the solar outer atmosphere as close to the Sun as 0.28 A.U., and from up to 35° out-of-ecliptic. The telescope design of the METIS coronagraph includes two optical paths: i) broad-band imaging of the full corona in linearly polarized visible-light (VL: 580-640 nm), ii) narrow-band imaging of the full corona in the ultraviolet (UV) Lyman α (121.6 nm). This paper describes the stray-light analyses performed on the UV and VL channels of the METIS Telescope with the nonsequential modality of Zemax OpticStudio. A detailed opto-mechanical model of the METIS Telescope is simulated by placing the CAD parts of all the sub-assemblies at the nominal position. Each surface, mechanical and optical, is provided with a modelled coating and BSDF reproducing the optical and the diffusing properties. The geometric model allows for the verification of the correct functioning of the blocking elements inside the telescope and for an evaluation of the stray-light level due to surface roughness. The diffraction off the inner edge of the IEO on the plane of the IO is modelled separately from the contributor of the surface micro-roughness. The contributors due to particle contamination and cosmetic defects are also analysed. The results obtained are merged together and compared to the requirements of stray-light. The results of this analysis together with those from two different analyses based on a Montecarlo ray-trace and a semi-analytical model are consistent with each other and indicate that the METIS design meets the stray-light level requirements
Aqueye+ is a new ultrafast optical single photon counter, based on single photon avalanche photodiodes (SPAD) and a 4- fold split-pupil concept. It is a completely revisited version of its predecessor, Aqueye, successfully mounted at the 182 cm Copernicus telescope in Asiago. Here we will present the new technological features implemented on Aqueye+, namely a state of the art timing system, a dedicated and optimized optical train, a high sensitivity and high frame rate field camera and remote control, which will give Aqueye plus much superior performances with respect to its predecessor, unparalleled by any other existing fast photometer. The instrument will host also an optical vorticity module to achieve high performance astronomical coronography and a real time acquisition of atmospheric seeing unit. The present paper describes the instrument and its first performances.
We have designed Aqueye+, an instrument for the Copernicus 182 cm Asiago Telescope, with two channels, one devoted to ultrafast photometry based on four single photon avalanche photodiodes, the second dedicated to stellar coronagraphy based on innovative optical vortex coronagraph system. The OVC requires a very good image quality, therefore an adaptive optic system AO was designed for the instrument. The peculiarity of this AO system is that there is no wavefront sensors, but the feedback for the deformable mirror is instead given by the photometric channel of Aqueye+.
In recent years, we developed two very high speed single photon photometers, Aqueye and Iqueye, as prototypes for “quantum” photometers for the Extremely Large Telescopes of the next decade. These instruments, based on single photon avalanche photodiodes and a 4-fold split-pupil concept, have been successfully used to obtain data of the highest quality on optical pulsars. Subsequently, we performed an attempt to utilize the Orbital Angular Momentum and associated Optical Vorticity to achieve high performance stellar coronagraphy. Presently, we are making a synergic effort in building Aqueye Plus, a new instrument for the 1.8 m telescope of the Asiago - Cima Ekar Observatory, which combines both functions, namely high speed simultaneous multicolor photon counting photometry and stellar coronagraphy. The innovative capability of Aqueye Plus is to take advantage of the two parallel outputs (NIM and TTL) of the four high time accuracy photon counting sensors. The NIM output preserves the best timing capability, while the TTL output drives a deformable 32-element mirror in a sort of quadrant detector to correct for defocus and tip/tilt aberrations of the stellar image on the phase mask discontinuity. This paper describes the Aqueye Plus instrument main characteristics and its foreseen performance.
METIS, the multi element telescope for imaging and spectroscopy, is a solar coronagraph foreseen for the Solar Orbiter
mission. METIS is conceived to observe the solar corona from a near-sun orbit in three different spectral bands: in the
HeII EUV narrow band at 30.4 nm, in the HI UV narrow band at 121.6 nm, and in the visible light band (500 - 650 nm).
The visible light from the corona is ten million times fainter than the light emitted by the solar disk, so a very stringent
light suppression design is needed for the visible channel. METIS adopts an “inverted occulted” configuration, where the
disk light is shielded by an annular shape occulter, after which an annular aspherical mirror M1 collects the signal
coming from the corona. The disk light heading through M1 is back-rejected by a suitable spherical mirror M0.
This paper presents the stray light analysis for this new-concept configuration, performed with a ray tracing simulation,
to insure the opto-mechanical design grants a stray light level below the limit of 10-9 times the coronal signal intensity. A
model of the optics and of the mechanical parts of the telescope has been realized with ASAP (Breault Research TM); by
means of a Montecarlo ray tracing, the effect of stray light on VIS and UVEUV channels has been simulated.
Iqueye is a novel extremely high speed photon-counting photometer for the European Southern Observatory New
Technology Telescope in La Silla (Chile). Iqueye collects the light from the telescope through a few arcsec aperture, and
splits it along four independent channels, each feeding a single photon avalanche diode. The produced count pulses are
collected by a time-to-digital converter board and suitably time-tagged. Thanks to a rubidium oscillator and a GPS
receiver, an absolute rms timing accuracy better than 0.5 ns during one-hour observations can be achieved by postprocessing
the data. The system can sustain a count rate of up to 8 MHz uninterruptedly for an entire night of
observation.
After the first run in January 2009, some improvements have been evidenced and realized: a more practical mechanical
structure, a better optimization of the optical design, an additional filter wheel per each channel, a fifth photon counting
detector for monitoring the sky, a more interactive interface software. The updated Iqueye has been tested in December
2009, and the obtained results showed still better performance. As an example, the light curves of visible pulsars down to
the 25th visible magnitude have been obtained in a few hours of observation.
Iqueye is a single photon counting very high speed photometer built for the ESO 3.5m New Technology Telescope
(NTT) in La Silla (Chile) as prototype of a 'quantum' photometer for the 42m European Extremely Large Telescope (E-ELT).
The optics of Iqueye splits the telescope pupil into four portions, each feeding a Single Photon Avalanche Diode
(SPAD) operated in Geiger mode. The SPADs sensitive area has a diameter of 100 μm, with a quantum efficiency better
than 55% at 500 nm, and a dark count less than 50 Hz. The quenching circuit and temperature control are integrated in
each module. A time-to-digital converter (TDC) board, controlled by a rubidium oscillator plus a GPS receiver, time tags
the pulses from the 4 channels. The individual times are stored in a 2 TeraByte memory. Iqueye can run continuously for
hours, handling count rates up to 8 MHz, with a final absolute accuracy of each time tag better that 0.5 ns. A first very
successful run was performed in Jan 2009; both very faint and very bright stars were observed, demonstrating the high
photometric quality of the instrument. The first run allowed also to identify some opto-mechanical improvements, which
have been implemented for a second run performed in Dec 2009. The present paper will describe the first version, the
improvements implemented in the second one, and some of the obtained astronomical results.
Iqueye is a high speed astronomical photon counting device, tested at the ESO 3.5 m New Technology Telescope in La
Silla (Chile). The optics splits the telescope pupil into four portions each feeding a Single Photon Avalanche Diode. A
time-to-digital converter board time tags the pulses from the 4 channels, and the times sent to a storage device. The
instrument is capable of running continuously up to a rate of 8 MHz, with an absolute rms accuracy better that 0.5 ns.
The time is obtained by means of a rubidium clock referenced to UTC through the GPS signal. The paper describes the
analysis performed on data taken on bright stars in order to perform 'quantum-like' measurements in the photon stream,
namely the calculation of the second-order correlation functions g(2)(x,0) and g(2)(0,t). To this end, an ad hoc software
correlator has been developed. Taking advantage of the pupil-splitting concept, the calculation of g(2)(x,0) has been made
between the sub-apertures of the telescope, as a first step to verify the zero-baseline correlation coefficient in an
Hanbury-Brown Twiss intensity interferometer [1]. Our experiment demonstrates the value of an Iqueye-like instrument
applied to larger telescopes, like the four 8 m VLTs or the two 10m Keck telescopes, and even more the sub-pupils of the
future 42 m E-ELT for a novel exploitation of the photon stream from celestial objects.
Almost all astronomical instruments detect and analyze the first order spatial and/or temporal coherence properties
of the photon stream coming from celestial sources. Additional information might be hidden in the second
and higher order coherence terms, as shown long ago by Hanbury-Brown and Twiss with the Narrabri Intensity
Interferometer. The future Extremely Large Telescopes and in particular the 42 m telescope of the European
Southern Observatory (ESO) could provide the high photon flux needed to extract this additional information.
To put these expectations (which we had already developed at the conceptual level in the QuantEYE study for the
100 m OverWhelmingly Large Telescope to experimental test in the real astronomical environment, we realized
a small prototype (Aqueye) for the Asiago 182 cm telescope. This instrument is the fastest photon counting
photometer ever built. It has 4 parallel channels operating simultaneously, feeding 4 Single Photon-Avalanche
Diodes (SPADs), with the ability to push the time tagging capabilities below the nano-second region for hours
of continuous operation. Aqueye has been extensively used to acquire photons from a variety of variable stars,
in particular from the pulsar in the Crab Nebula. Following this successful realization, a larger version, named
Iqueye, has been built for the 3.5 m New Technology Telescope (NTT) of ESO. Iqueye follows the same optical
solution of dividing the telescope pupil in 4 sub-pupils, imaged on new generation SPADs having useful diameters
of 100 micrometers, time jitter less than 50 picoseconds and dark-count noise less than 50 counts/second. The
spectral efficiency of the system peaks in the visible region of the spectrum. Iqueye operated very successfully at
the NTT in January 2009. The present paper describes the main features of the two photometers and present
some of the astronomical results already obtained.
Typical diffraction and vignetting effects associated to the use of both externally and internally occulted coronagraphs
make the innermost solar corona quite unobserved. However, by increasing the distance between the coronagraph
telescope and the external occulter to hundred of meters, it is possible to observe the solar corona down to 1.01 solar
radii without vignetting. This is the case of ASPIICS (Association de Satellites Pour l'Imagerie et l'Interférométrie
Coronographique Solaire), a mission proposed to ESA for the PROBA3 program for formation flying. ASPIICS foresees
two satellites: the external occulter is located on one spacecraft, and the telescope on the other.
In this work we present the results obtained by a theoretical analysis of the apodization of the external occulter. This
technique allows the reduction of the diffracted light contribution. We have developed a code that can simulates the
effects of the giant external occulter (1 m diameter) on the photospheric light, and calculates the intensity of the
diffracted light on the coronagraph entrance aperture. It is possible, in this way, to analyze various shapes of the occulter
edge. In particular, we have focused our attention in the case of the serrated disc with variable number of teeth of
different length. We considered the simple occurrence of a point-like monochromatic source at infinity. The results show
that, employing a toothed disc, improvement of the S/N ratio of many order of magnitude (whit respect to a simple
circular flat disc) can be obtained.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.