KEYWORDS: In vivo imaging, Light sources and illumination, Confocal microscopy, Signal to noise ratio, Optical imaging, Neuroimaging, Crosstalk, Brain, Tissues, Tissue optics
Advancements in genetically encoded voltage indicators (GEVIs) have made it possible to measure cellular membrane potential changes optically. But performing GEVI imaging in vivo remains highly challenging due to factors such as low GEVI concentrations, modest signal dynamic range, tissue scattering, out-of-focus fluorescence. To address these challenges, we developed a microscopy technique that take advatanges from both widefield targeted illumination and confocal background rejection, enabling high SNR low crosstalk GEVI imaging across millimeter fields-of-view, at supra-kilohertz frame rates, over extended durations, and at high penetration depths. We demonstrate our technique under a variety of imaging conditions across multiple brain regions and with different classes of GEVIs.
Recent improvements in genetically encoded voltage indicators have enabled optical imaging of action potentials and subthreshold membrane voltage from single neurons in the mammalian brain. However, most current voltage imaging techniques can only simultaneously sample a few cell, limited either by strong background or small field-of-view. We show that, both theoretically and experimentally, targeted illumination with a widefield microscopy can significantly improve voltage imaging performance by improving signal contrast and reducing background cross-contamination. With such improvements, we demonstrated large-scale voltage imaging with fully genetically encoded voltage indicator SomArchon from tens of neurons over a large anatomical area, while maintaining signal contrast over a prolonged recording duration of several continuous minutes.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.