Simultaneous Localization and Mapping (SLAM) is a good choice for UAV navigation when both UAV’s position and region map are not known. Due to nonlinearity of kinematic equations of a UAV, Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) are employed. In this study, EKF and UKF based A-SLAM concepts are discussed in details by presenting the formulations and simulation results. The UAV kinematic model and the state-observation models for EKF and UKF based A-SLAM methods are developed to analyze the filters' consistencies. Analysis during landmark observation exhibits an inconsistency in the form of a jagged UAV trajectory. It has been found that unobservable subspaces and the Jacobien matrices used for linearization are two major sources of the inconsistencies observed. UKF performs better in terms of filter consistency since it does not require the Jacobien matrix linearization.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.